HOME

TheInfoList



OR:

The Bragg peak is a pronounced peak on the Bragg curve which plots the energy loss of
ionizing radiation Ionizing (ionising) radiation, including Radioactive decay, nuclear radiation, consists of subatomic particles or electromagnetic waves that have enough energy per individual photon or particle to ionization, ionize atoms or molecules by detaching ...
during its travel through matter. For
proton A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
s, α-rays, and other ion rays, the peak occurs immediately before the particles come to rest. It is named after William Henry Bragg, who discovered it in 1903 using alpha particles from radium, and wrote the first empirical formula for ionization energy loss per distance with Richard Kleeman. When a fast
charged particle In physics, a charged particle is a particle with an electric charge. For example, some elementary particles, like the electron or quarks are charged. Some composite particles like protons are charged particles. An ion, such as a molecule or atom ...
moves through matter, it ionizes atoms of the material and deposits a dose along its path. A peak occurs because the interaction cross section increases as the charged particle's energy decreases. Energy lost by charged particles is inversely proportional to the square of their velocity, which explains the peak occurring just before the particle comes to a complete stop. In the upper figure, it is the peak for alpha particles of 5.49 MeV moving through air. In the lower figure, it is the narrow peak of the "native" proton beam curve which is produced by a
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel electric charge, charged particles to very high speeds and energies to contain them in well-defined particle beam, beams. Small accelerators are used for fundamental ...
of 250 MeV. The figure also shows the absorption of a beam of energetic
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
s (
X-ray An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
s) which is entirely different in nature; the curve is mainly exponential. This characteristic of proton beams was first recommended for use in cancer therapy by Robert R. Wilson in his 1946 article, Radiological Use of Fast Protons. Wilson studied how the depth of proton beam penetration could be controlled by the energy of the protons. This phenomenon is exploited in particle therapy of cancer, specifically in proton therapy, to concentrate the effect of light ion beams on the
tumor A neoplasm () is a type of abnormal and excessive growth of tissue. The process that occurs to form or produce a neoplasm is called neoplasia. The growth of a neoplasm is uncoordinated with that of the normal surrounding tissue, and persists ...
being treated while minimizing the effect on the surrounding healthy tissue. The blue curve in the figure ("modified proton beam") shows how the originally monoenergetic proton beam with the sharp peak is widened by increasing the range of energies, so that a larger tumor volume can be treated. The plateau created by modifying the proton beam is referred to as the spread out Bragg Peak, or SOBP, which allows the treatment to conform to not only larger tumors, but to more specific 3D shapes. This can be achieved by using variable thickness attenuators like spinning wedges. Momentum cooling in cyclotron-based proton therapy facilities enables a sharper distal fall-off of the Bragg peak and the attainment of high dose rates. As shown in the plots above, there is a limited range for the particles in a material. The Bragg–Kleeman rule is a way to estimate a particle's range in a medium, serving as a tool in particle detection and dosimetry. The basic form of the rule is: :\frac = \frac where ''R''1 and ''R''2 are the ranges of two particles, ''ρ''1 and ''ρ''2 are the densities of the media they traverse, and ''A''1 and ''A''2 are the atomic weights of the particles.


See also

* Stopping power (particle radiation) * Bremsstrahlung *
Linear energy transfer In dosimetry, linear energy transfer (LET) is the amount of energy that an ionizing particle transfers to the material traversed per unit distance. It describes the action of radiation into matter. It is identical to the retarding force acting o ...
* Proton therapy


References


External links

* * * * * {{DEFAULTSORT:Bragg Peak Ionizing radiation Experimental particle physics Radiation therapy