HOME

TheInfoList



OR:

In the
history of quantum mechanics The history of quantum mechanics is a fundamental part of the History of physics#20th century: birth of modern physics, history of modern physics. The major chapters of this history begin with the emergence of quantum ideas to explain individual ...
, the Bohr–Kramers–Slater (BKS) theory was perhaps the final attempt at understanding the interaction of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic pa ...
and
electromagnetic radiation In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength ...
on the basis of the so-called
old quantum theory The old quantum theory is a collection of results from the years 1900–1925, which predate modern quantum mechanics. The theory was never complete or self-consistent, but was instead a set of heuristic corrections to classical mechanics. The th ...
, in which quantum phenomena are treated by imposing quantum restrictions on classically describable behaviour. It was advanced in 1924, and sticks to a ''classical'' wave description of the electromagnetic field. It was perhaps more a research program than a full physical theory, the ideas that are developed not being worked out in a quantitative way. The purpose of BKS theory was to disprove Einstein's hypothesis of the light quantum. One aspect, the idea of modelling atomic behaviour under incident electromagnetic radiation using "virtual oscillators" at the absorption and emission frequencies, rather than the (different) apparent frequencies of the Bohr orbits, significantly led
Max Born Max Born (; 11 December 1882 – 5 January 1970) was a German-British theoretical physicist who was instrumental in the development of quantum mechanics. He also made contributions to solid-state physics and optics, and supervised the work of a ...
,
Werner Heisenberg Werner Karl Heisenberg (; ; 5 December 1901 – 1 February 1976) was a German theoretical physicist, one of the main pioneers of the theory of quantum mechanics and a principal scientist in the German nuclear program during World War II. He pub ...
and Hendrik Kramers to explore mathematics that strongly inspired the subsequent development of matrix mechanics, the first form of modern
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
. The provocativeness of the theory also generated great discussion and renewed attention to the difficulties in the foundations of the old quantum theory.
Max Jammer Max Jammer (; born Moshe Jammer, ; 13 April 1915 – 18 December 2010), was an Israeli physicist and philosophy of physics, philosopher of physics. He was born in Berlin, Germany. He was Rector and Acting President at Bar-Ilan University from 19 ...
, ''Conceptual Development of Quantum Mechanics'', 2e, 1989, p.188
However, physically the most provocative element of the theory, that momentum and energy would not necessarily be conserved in each interaction but only overall, statistically, was soon shown to be in conflict with experiment. Walther Bothe won the
Nobel Prize in Physics The Nobel Prize in Physics () is an annual award given by the Royal Swedish Academy of Sciences for those who have made the most outstanding contributions to mankind in the field of physics. It is one of the five Nobel Prizes established by the ...
in 1954 for the Bothe–Geiger coincidence experiment that experimentally disproved BKS theory.


Origins

When
Albert Einstein Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
introduced the light quantum (
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
) in 1905, there was much resistance from the scientific community. However, when in 1923, the Compton effect showed the results could be explained by assuming the light beam behaves as light-quanta and that energy and momentum are conserved,
Niels Bohr Niels Henrik David Bohr (, ; ; 7 October 1885 – 18 November 1962) was a Danish theoretical physicist who made foundational contributions to understanding atomic structure and old quantum theory, quantum theory, for which he received the No ...
was still resistant against quantized light, even repudiating it in his 1922
Nobel Prize The Nobel Prizes ( ; ; ) are awards administered by the Nobel Foundation and granted in accordance with the principle of "for the greatest benefit to humankind". The prizes were first awarded in 1901, marking the fifth anniversary of Alfred N ...
lecture. So Bohr found a way of using Einstein's approach without also using the light-quantum hypothesis by reinterpreting the principles of energy and momentum conservation as statistical principles. Thus, it was in 1924 that Bohr, Hendrik Kramers and John C. Slater published a provocative description of the interaction of matter and electromagnetic interaction, historically known as the BKS paper that combined quantum transitions and electromagnetic waves with energy and momentum being conserved only on average. The initial idea of the BKS theory originated with Slater, who proposed to Bohr and Kramers the following elements of a theory of emission and absorption of radiation by atoms, to be developed during his stay in Copenhagen: # Emission and absorption of electromagnetic radiation by matter is realized in agreement with Einstein's photon concept; # A photon emitted by an atom is guided by a classical electromagnetic field (cf. Louis de Broglie's ideas published September 1923) consisting of spherical waves, thus enabling an explanation of interference; # Even when there are no transitions there exists a classical field to which all atoms contribute; this field contains all frequencies at which an atom can emit or absorb a photon, the probability of such an emission being determined by the amplitude of the corresponding Fourier component of the field; the probabilistic aspect is provisional, to be eliminated when the dynamics of the inside of atoms are better known; # The classical field is not produced by the actual motions of the electrons but by "motions with the frequencies of possible emission and absorption lines" (to be called virtual'' oscillators', creating a field to be referred to as 'virtual' as well). This fourth point reverts to
Max Planck Max Karl Ernst Ludwig Planck (; ; 23 April 1858 – 4 October 1947) was a German Theoretical physics, theoretical physicist whose discovery of energy quantum, quanta won him the Nobel Prize in Physics in 1918. Planck made many substantial con ...
's original view of his quantum introduction in 1900. Planck also did not believe that light was quantized. He believed that a black body had virtual oscillators and that only during interactions between light and the virtual oscillators of the body was the quantum to be considered. Max Planck said in 1911, Independently, Franz S. Exner had also suggested the statistical validity of energy conservation in the same spirit as the
second law of thermodynamics The second law of thermodynamics is a physical law based on Universal (metaphysics), universal empirical observation concerning heat and Energy transformation, energy interconversions. A simple statement of the law is that heat always flows spont ...
.
Erwin Schrödinger Erwin Rudolf Josef Alexander Schrödinger ( ; ; 12 August 1887 – 4 January 1961), sometimes written as or , was an Austrian-Irish theoretical physicist who developed fundamental results in quantum field theory, quantum theory. In particul ...
, who did his habilitation under the supervision of Exner, was very supportive of the BKS theory. Schrödinger published a paper to provide his own interpretation of the BKS statistical interpretation.


Development with Bohr and Kramers

Slater's main intention seems to have been to reconcile the two conflicting models of radiation, viz. the wave and particle models. He may have had good hopes that his idea with respect to oscillators vibrating at the ''differences'' of the frequencies of electron rotations (rather than at the rotation frequencies themselves) might be attractive to Bohr because it solved a problem of the latter's atomic model, even though the physical meaning of these oscillators was far from clear. Nevertheless, Bohr and Kramers had two objections to Slater's proposal: # The assumption that photons exist. Even though Einstein's photon hypothesis could explain in a simple way the
photoelectric effect The photoelectric effect is the emission of electrons from a material caused by electromagnetic radiation such as ultraviolet light. Electrons emitted in this manner are called photoelectrons. The phenomenon is studied in condensed matter physi ...
, as well as
conservation of energy The law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be Conservation law, ''conserved'' over time. In the case of a Closed system#In thermodynamics, closed system, the principle s ...
in processes of de-excitation of an atom followed by excitation of a neighboring one, Bohr had always been reluctant to accept the reality of photons, his main argument being the problem of reconciling the existence of photons with the phenomenon of interference; # The impossibility to account for conservation of energy in a process of de-excitation of an atom followed by excitation of a neighboring one. This impossibility followed from Slater's probabilistic assumption, which did not imply any correlation between processes going on in different atoms. As
Max Jammer Max Jammer (; born Moshe Jammer, ; 13 April 1915 – 18 December 2010), was an Israeli physicist and philosophy of physics, philosopher of physics. He was born in Berlin, Germany. He was Rector and Acting President at Bar-Ilan University from 19 ...
puts it, this refocussed the theory "to harmonize the physical picture of the continuous electromagnetic field with the physical picture, not as Slater had proposed of light quanta, but of the discontinuous quantum transitions in the atom." Bohr and Kramers hoped to be able to evade the photon hypothesis on the basis of ongoing work by Kramers to describe "dispersion" (in present-day terms inelastic scattering) of light by means of a classical theory of interaction of radiation and matter. But abandoning the concept of the photon, they instead chose to squarely accept the possibility of non-conservation of energy, and momentum.


Experimental counter-evidence

In the BKS paper the Compton effect was discussed as an application of the idea of "''statistical'' conservation of energy and momentum" in a continuous process of scattering of radiation by a sample of free electrons, where "each of the electrons contributes through the emission of coherent secondary wavelets". Although Arthur Compton had already given an attractive account of his experiment on the basis of the photon picture (including conservation of energy and momentum in ''individual'' scattering processes), is it stated in the BKS paper that "it seems at the present state of science hardly justifiable to reject a formal interpretation as that under consideration .e. the weaker assumption of ''statistical'' conservationas inadequate". This statement may have prompted experimental physicists to improve `the present state of science' by testing the hypothesis of `statistical energy and momentum conservation'. In any case, already after one year the BKS theory was disproved by coincidence methods studying correlations between the directions into which the emitted radiation and the recoil electron are emitted in individual scattering processes. Such experiments were carried independently, with the Bothe–Geiger coincidence experiment performed by Walther Bothe and
Hans Geiger Johannes Wilhelm Geiger ( , ; ; 30 September 1882 – 24 September 1945) was a German nuclear physicist. He is known as the inventor of the Geiger counter, a device used to detect ionizing radiation, and for carrying out the Rutherford scatt ...
, as well as the experiment by Compton and Alfred W. Simon. They provided experimental evidence pointing in the direction of energy and momentum conservation in individual scattering processes (at least, it was shown that the BKS theory was not able to explain the experimental results). More accurate experiments, performed much later, have also confirmed these results. Commenting on the experiments, Max von Laue considered that “physics was saved from being led astray.” From the very beginning,
Wolfgang Pauli Wolfgang Ernst Pauli ( ; ; 25 April 1900 – 15 December 1958) was an Austrian theoretical physicist and a pioneer of quantum mechanics. In 1945, after having been nominated by Albert Einstein, Pauli received the Nobel Prize in Physics "for the ...
was extremely critical of the BKS theory, referring to it as the Copenhagen putsch (). In a letter to Kramers, Pauli said that Bohr would have abandoned the theory even if no experiment was ever carried out, arguing that it is the notion of motion and forces that needs to be modified, not the conservation of energy. Pauli could not help to mock the theory, proposing to the Institute of Physics in Copenhague to “fly its flag at half mast on the anniversary of the publication of the work of Bohr, Kramers and Slater.” As suggested by a letter to
Max Born Max Born (; 11 December 1882 – 5 January 1970) was a German-British theoretical physicist who was instrumental in the development of quantum mechanics. He also made contributions to solid-state physics and optics, and supervised the work of a ...
, for Einstein, the corroboration of energy and momentum conservation was probably even more important than his photon hypothesis: In light of the experimental results, Bohr informed Charles Galton Darwin that "there is nothing else to do than to give our revolutionary efforts as honourable a funeral as possible". Bohr's reaction, too, was not primarily related to the photon hypothesis. According to
Werner Heisenberg Werner Karl Heisenberg (; ; 5 December 1901 – 1 February 1976) was a German theoretical physicist, one of the main pioneers of the theory of quantum mechanics and a principal scientist in the German nuclear program during World War II. He pub ...
,Interview with Mehra, quoted in Ref. 2, p. 554 Bohr remarked: For Bohr the lesson to be learned from the disproof of the BKS theory was not that photons do exist, but rather that the applicability of classical space-time pictures in understanding phenomena within the quantum domain is limited. This theme would become particularly important a few years later in developing the notion of complementarity. According to Heisenberg, Born's statistical interpretation also had its ultimate roots in the BKS theory. Hence, despite its failure the BKS theory still provided an important contribution to the revolutionary transition from classical mechanics to quantum mechanics. Schrödinger would not abandon the statistical interpretation and would continue to push this theory until the end of his life.


References

{{DEFAULTSORT:Bks Theory Conservation laws Photons Quantum mechanics Niels Bohr History of physics Old quantum theory