HOME

TheInfoList



OR:

The Bohr equation, named after
Danish Danish may refer to: * Something of, from, or related to the country of Denmark People * A national or citizen of Denmark, also called a "Dane," see Demographics of Denmark * Culture of Denmark * Danish people or Danes, people with a Danish ance ...
physician Christian Bohr (1855–1911), describes the amount of physiological dead space in a person's lungs. This is given as a
ratio In mathematics, a ratio shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ...
of dead space to
tidal volume Tidal volume (symbol VT or TV) is the volume of air moved into or out of the lungs during a normal breath. In a healthy, young human adult, tidal volume is approximately 500 ml per inspiration or 7 ml/kg of body mass. Mechanical vent ...
. It differs from anatomical dead space as measured by Fowler's method as it includes alveolar dead space.


Description

The Bohr equation is used to quantify the ratio of physiological dead space to the total tidal volume, and gives an indication of the extent of wasted ventilation. The original formulation by Bohr, required measurement of the alveolar partial pressure PA. :\frac = \frac The modification by Enghoff replaced the mixed alveolar partial pressure of CO2 with the arterial partial pressure of that gas. The Bohr equation, with Enghoff's modification, is commonly stated as follows: :\frac = \frac Here V_ is the volume of the exhale that arises from the physiological dead space of the lung and V_ is the tidal volume; ::P_ is the partial pressure of carbon dioxide in the arterial blood, and ::P_ is the partial pressure of carbon dioxide in the average expired (exhaled) air.


Derivation

Its derivation is based on the fact that only the ventilated gases involved in gas exchange (V_A) will produce CO2. Because the total tidal volume (V_T) is made up of V_A+V_d (alveolar volume + dead space volume), we can substitute V_A for V_T-V_d. Initially, Bohr tells us VT = Vd + VA. The Bohr equation helps us find the amount of any expired gas, , N2, O2, etc. In this case we will focus on CO2. Defining Fe as the fraction of CO2 in the average expired breath, FA as the fraction of CO2 in the perfused alveolar volume, and Fd as the CO2 makeup of the unperfused (and thus 'dead') region of the lung; VT x Fe = ( Vd x Fd ) + (VA x FA ). This states that all of the CO2 expired comes from two regions, the dead space volume and the alveolar volume.
If we suppose that Fd = 0 (since carbon dioxide's concentration in air is normally negligible), then we can say that:Davies, Andrew, and Carl Moores. The Respiratory System. Systems of the body. Edinburgh: Churchill Livingstone, 2003. : V_T \times F_e = V_A \times F_A Where = Fraction expired CO2, and = Alveolar fraction of CO2. :V_T \times F_e = (V_T - V_d) \times F_A Substituted as above. :V_T \times F_e = V_T \times F_A - V_d \times F_A Multiply out the brackets. :V_d \times F_A = V_T \times F_A - V_T \times F_e Rearranging. :V_d \times F_A = V_T \times (F_A - F_e) : V_d/V_T = \frac Divide by and by . The only source of CO2 is the alveolar space where gas exchange with blood takes place. Thus the alveolar fractional component of CO2, FA, will always be higher than the average CO2 content of the expired air because of a non-zero dead space volume Vd, thus the above equation will always yield a positive number. Where Ptot is the total pressure, we obtain: *F_A \times P_ = P_A\ce and *F_e \times P_ = P_e\ce Therefore: :\begin V_d/V_T &= \frac\\ & = \frac \end A common step is to then presume that the partial pressure of carbon dioxide in the end-tidal exhaled air is in equilibrium with that gas' tension in the blood that leaves the alveolar capillaries of the lung.


References

{{Reflist Respiratory physiology