HOME

TheInfoList



OR:

In the theory of algebraic plane curves, a general
quartic plane curve In algebraic geometry, a quartic plane curve is a plane algebraic curve of the fourth degree. It can be defined by a bivariate quartic equation: :Ax^4+By^4+Cx^3y+Dx^2y^2+Exy^3+Fx^3+Gy^3+Hx^2y+Ixy^2+Jx^2+Ky^2+Lxy+Mx+Ny+P=0, with at least one of ...
has 28
bitangent In geometry, a bitangent to a curve is a line that touches in two distinct points and and that has the same direction as at these points. That is, is a tangent line at and at . Bitangents of algebraic curves In general, an algebraic cu ...
lines, lines that are tangent to the curve in two places. These lines exist in the
complex projective plane In mathematics, the complex projective plane, usually denoted or is the two-dimensional complex projective space. It is a complex manifold of complex dimension 2, described by three complex coordinates :(Z_1,Z_2,Z_3) \in \C^3, \qquad (Z_1,Z_2, ...
, but it is possible to define quartic curves for which all 28 of these lines have
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s as their coordinates and therefore belong to the
Euclidean plane In mathematics, a Euclidean plane is a Euclidean space of Two-dimensional space, dimension two, denoted \textbf^2 or \mathbb^2. It is a geometric space in which two real numbers are required to determine the position (geometry), position of eac ...
. An explicit quartic with twenty-eight real bitangents was first given by As Plücker showed, the number of real bitangents of any quartic must be 28, 16, or a number less than 9. Another quartic with 28 real bitangents can be formed by the locus of centers of
ellipse In mathematics, an ellipse is a plane curve surrounding two focus (geometry), focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special ty ...
s with fixed axis lengths, tangent to two non-parallel lines. gave a different construction of a quartic with twenty-eight bitangents, formed by projecting a
cubic surface In mathematics, a cubic surface is a surface in 3-dimensional space defined by one polynomial equation of degree 3. Cubic surfaces are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than ...
; twenty-seven of the bitangents to Shioda's curve are real while the twenty-eighth is the
line at infinity In geometry and topology, the line at infinity is a projective line that is added to the affine plane in order to give closure to, and remove the exceptional cases from, the incidence properties of the resulting projective plane. The line at ...
in the projective plane.


Example

The Trott curve, another curve with 28 real bitangents, is the set of points (''x'',''y'') satisfying the degree four
polynomial In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
equation :\displaystyle 144(x^4+y^4)-225(x^2+y^2)+350x^2y^2+81=0. These points form a nonsingular quartic curve that has
genus Genus (; : genera ) is a taxonomic rank above species and below family (taxonomy), family as used in the biological classification of extant taxon, living and fossil organisms as well as Virus classification#ICTV classification, viruses. In bino ...
three and that has twenty-eight real
bitangent In geometry, a bitangent to a curve is a line that touches in two distinct points and and that has the same direction as at these points. That is, is a tangent line at and at . Bitangents of algebraic curves In general, an algebraic cu ...
s. Like the examples of Plücker and of Blum and Guinand, the Trott curve has four separated ovals, the maximum number for a curve of degree four, and hence is an M-curve. The four ovals can be grouped into six different pairs of ovals; for each pair of ovals there are four bitangents touching both ovals in the pair, two that separate the two ovals, and two that do not. Additionally, each oval bounds a nonconvex region of the plane and has one bitangent spanning the nonconvex portion of its boundary.


Connections to other structures

The
dual curve In projective geometry, a dual curve of a given plane curve is a curve in the dual projective plane consisting of the set of lines tangent to . There is a map from a curve to its dual, sending each point to the point dual to its tangent line. I ...
to a quartic curve has 28 real ordinary double points, dual to the 28 bitangents of the primal curve. The 28 bitangents of a quartic may also be placed in correspondence with symbols of the form :\begin a & b & c \\ d & e & f \\ \end where are all zero or one and where :ad + be + cf = 1\ (\operatorname\ 2). There are 64 choices for , but only 28 of these choices produce an odd sum. One may also interpret as the
homogeneous coordinates In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work , are a system of coordinates used in projective geometry, just as Cartesian coordinates are used in Euclidean geometry. ...
of a point of the
Fano plane In finite geometry, the Fano plane (named after Gino Fano) is a finite projective plane with the smallest possible number of points and lines: 7 points and 7 lines, with 3 points on every line and 3 lines through every point. These points and ...
and as the coordinates of a line in the same finite projective plane; the condition that the sum is odd is equivalent to requiring that the point and the line do not touch each other, and there are 28 different pairs of a point and a line that do not touch. The points and lines of the Fano plane that are disjoint from a non-incident point-line pair form a triangle, and the bitangents of a quartic have been considered as being in correspondence with the 28 triangles of the Fano plane.. The
Levi graph In combinatorial mathematics, a Levi graph or incidence graph is a bipartite graph associated with an incidence structure.. See in particulap. 181 From a collection of points and lines in an incidence geometry or a projective configuration, we ...
of the Fano plane is the
Heawood graph In the mathematical field of graph theory, the Heawood graph is an undirected graph with 14 vertices and 21 edges, named after Percy John Heawood. Combinatorial properties The graph is cubic, and all cycles in the graph have six or more edges. ...
, in which the triangles of the Fano plane are represented by 6-cycles. The 28 6-cycles of the Heawood graph in turn correspond to the 28 vertices of the
Coxeter graph In the mathematics, mathematical field of graph theory, the Coxeter graph is a 3-regular graph with 28 vertices and 42 edges. It is one of the 13 known cubic graph, cubic distance-regular graphs. It is named after Harold Scott MacDonald Coxeter ...
. The 28 bitangents of a quartic also correspond to pairs of the 56 lines on a degree-2
del Pezzo surface In mathematics, a del Pezzo surface or Fano surface is a two-dimensional Fano variety, in other words a non-singular projective algebraic surface with ample anticanonical divisor class. They are in some sense the opposite of surfaces of genera ...
, and to the 28 odd
theta characteristic In mathematics, a theta characteristic of a non-singular algebraic curve ''C'' is a divisor class Θ such that 2Θ is the canonical class. In terms of holomorphic line bundles ''L'' on a connected compact Riemann surface, it is therefore ''L'' su ...
s. The 27 lines on the cubic and the 28 bitangents on a quartic, together with the 120 tritangent planes of a canonic sextic curve of genus 4, form a "
trinity The Trinity (, from 'threefold') is the Christian doctrine concerning the nature of God, which defines one God existing in three, , consubstantial divine persons: God the Father, God the Son (Jesus Christ) and God the Holy Spirit, thr ...
" in the sense of
Vladimir Arnold Vladimir Igorevich Arnold (or Arnol'd; , ; 12 June 1937 – 3 June 2010) was a Soviet and Russian mathematician. He is best known for the Kolmogorov–Arnold–Moser theorem regarding the stability of integrable systems, and contributed to s ...
, specifically a form of McKay correspondence, and can be related to many further objects, including E7 and E8, as discussed at '' trinities.''


Notes


References

* *. In ''The collected mathematical papers of Arthur Cayley'', Andrew Russell Forsyth, ed., The University Press, 1896, vol. 11, pp. 221–223. *
Reprinted
in . *. * *. *. As cited by Cayley. * *{{citation , last = Trott , first = Michael , issue = 1 , journal = Mathematica in Education and Research , pages = 15–28 , title = Applying GroebnerBasis to Three Problems in Geometry , volume = 6 , year = 1997. Quartic curves Real algebraic geometry