HOME

TheInfoList



OR:

Molecular binding is an attractive interaction between two
molecule A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
s that results in a stable association in which the molecules are in close proximity to each other. It is formed when atoms or molecules bind together by sharing of electrons. It often, but not always, involves some
chemical bond A chemical bond is the association of atoms or ions to form molecules, crystals, and other structures. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds or through the sharing of electrons a ...
ing. In some cases, the associations can be quite strong—for example, the protein streptavidin and the vitamin biotin have a dissociation constant (reflecting the ratio between bound and free biotin) on the order of 10−14—and so the reactions are effectively irreversible. The result of molecular binding is sometimes the formation of a molecular complex in which the attractive forces holding the components together are generally non-covalent, and thus are normally energetically weaker than
covalent bond A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
s. Molecular binding occurs in biological complexes (e.g., between pairs or sets of proteins, or between a protein and a small molecule
ligand In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's el ...
it binds) and also in abiologic chemical systems, e.g. as in cases of '' coordination polymers'' and ''coordination networks'' such as metal-organic frameworks.


Types

Molecular binding can be classified into the following types: * Non-covalent – no chemical bonds are formed between the two interacting molecules hence the association is fully reversible * Reversible
covalent A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
– a chemical bond is formed, however the free energy difference separating the noncovalently-bonded reactants from bonded product is near equilibrium and the activation barrier is relatively low such that the reverse reaction which cleaves the chemical bond easily occurs * Irreversible covalent – a chemical bond is formed in which the product is thermodynamically much more stable than the reactants such that the reverse reaction does not take place. Bound molecules are sometimes called a "molecular complex"—the term generally refers to non-covalent associations. Non-covalent interactions can effectively become irreversible; for example, tight binding inhibitors of
enzyme An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
s can have kinetics that closely resemble irreversible covalent inhibitors. Among the tightest known protein–protein complexes is that between the enzyme angiogenin and ribonuclease inhibitor; the dissociation constant for the human proteins is 5x10−16 mol/L. Another biological example is the binding protein streptavidin, which has extraordinarily high affinity for biotin (vitamin B7/H, dissociation constant, Kd ≈10−14 mol/L). In such cases, if the reaction conditions change (e.g., the protein moves into an environment where biotin concentrations are very low, or pH or ionic conditions are altered), the reverse reaction can be promoted. For example, the biotin-streptavidin interaction can be broken by incubating the complex in water at 70 °C, without damaging either molecule. An example of change in local concentration causing dissociation can be found in the Bohr effect, which describes the dissociation of ligands from
hemoglobin Hemoglobin (haemoglobin, Hb or Hgb) is a protein containing iron that facilitates the transportation of oxygen in red blood cells. Almost all vertebrates contain hemoglobin, with the sole exception of the fish family Channichthyidae. Hemoglobin ...
in the lung versus peripheral tissues. Some protein–protein interactions result in covalent bonding, and some
pharmaceuticals Medication (also called medicament, medicine, pharmaceutical drug, medicinal product, medicinal drug or simply drug) is a drug used to diagnose, cure, treat, or prevent disease. Drug therapy ( pharmacotherapy) is an important part of the ...
are irreversible antagonists that may or may not be covalently bound.
Drug discovery In the fields of medicine, biotechnology, and pharmacology, drug discovery is the process by which new candidate medications are discovered. Historically, drugs were discovered by identifying the active ingredient from traditional remedies or ...
has been through periods when drug candidates that bind covalently to their targets are attractive and then are avoided; the success of bortezomib made
boron Boron is a chemical element; it has symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the boron group it has three ...
-based covalently binding candidates more attractive in the late 2000s.


Driving force

In order for the complex to be stable, the free energy of complex by definition must be lower than the solvent separated molecules. The binding may be primarily
entropy Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
-driven (release of ordered solvent molecules around the isolated molecule that results in a net increase of entropy of the system). When the solvent is water, this is known as the hydrophobic effect. Alternatively, the binding may be
enthalpy Enthalpy () is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant extern ...
-driven where non-covalent attractive forces such as
electrostatic Electrostatics is a branch of physics that studies slow-moving or stationary electric charges. Since classical times, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word (), mean ...
attraction,
hydrogen bonding In chemistry, a hydrogen bond (H-bond) is a specific type of molecular interaction that exhibits partial covalent character and cannot be described as a purely electrostatic force. It occurs when a hydrogen (H) atom, Covalent bond, covalently b ...
, and van der Waals /
London dispersion force London dispersion forces (LDF, also known as dispersion forces, London forces, instantaneous dipole–induced dipole forces, fluctuating induced dipole bonds or loosely as van der Waals forces) are a type of intermolecular force acting between at ...
s are primarily responsible for the formation of a stable complex. Complexes that have a strong entropy contribution to formation tend to have weak enthalpy contributions. Conversely complexes that have strong enthalpy component tend to have a weak entropy component. This phenomenon is known as enthalpy-entropy compensation.


Measurement

The strength of binding between the components of molecular complex is measured quantitatively by the binding constant (KA), defined as the ratio of the concentration of the complex divided by the product of the concentrations of the isolated components at equilibrium in molar units: :A+B \rightleftharpoons AB:\log K_ =\log \left(\frac \right)=-pK_ When the molecular complex prevents the normal functioning of an
enzyme An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
, the binding constant is also referred to as inhibition constant (KI).


Examples

Molecules that can participate in molecular binding include
proteins Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, re ...
,
nucleic acids Nucleic acids are large biomolecules that are crucial in all cells and viruses. They are composed of nucleotides, which are the monomer components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main classes of nucleic a ...
,
carbohydrates A carbohydrate () is a biomolecule composed of carbon (C), hydrogen (H), and oxygen (O) atoms. The typical hydrogen-to-oxygen atomic ratio is 2:1, analogous to that of water, and is represented by the empirical formula (where ''m'' and ''n'' ma ...
,
lipids Lipids are a broad group of organic compounds which include fats, waxes, sterols, fat-soluble vitamins (such as vitamins Vitamin A, A, Vitamin D, D, Vitamin E, E and Vitamin K, K), monoglycerides, diglycerides, phospholipids, and others. The fu ...
, and small organic molecules such as
drugs A drug is any chemical substance other than a nutrient or an essential dietary ingredient, which, when administered to a living organism, produces a biological effect. Consumption of drugs can be via inhalation, injection, smoking, ingestio ...
. Hence the types of complexes that form as a result of molecular binding include: * protein–protein * protein–
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
* protein–
hormone A hormone (from the Ancient Greek, Greek participle , "setting in motion") is a class of cell signaling, signaling molecules in multicellular organisms that are sent to distant organs or tissues by complex biological processes to regulate physio ...
* protein–drug Proteins that form stable complexes with other molecules are often referred to as receptors while their binding partners are called
ligand In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's el ...
s.


See also

*
Receptor (biochemistry) In biochemistry and pharmacology, receptors are chemical structures, composed of protein, that receive and Signal_transduction, transduce signals that may be integrated into biological systems. These signals are typically chemical messengers whi ...
*
Supramolecular chemistry Supramolecular chemistry refers to the branch of chemistry concerning Chemical species, chemical systems composed of a integer, discrete number of molecules. The strength of the forces responsible for spatial organization of the system range from w ...


References

{{Pharmacology Medicinal chemistry Molecular physics