HOME

TheInfoList



OR:

In game theory, a bimatrix game is a simultaneous game for two players in which each player has a finite number of possible actions. The name comes from the fact that the normal form of such a game can be described by two matrices - matrix A describing the payoffs of player 1 and matrix B describing the payoffs of player 2. Player 1 is often called the "row player" and player 2 the "column player". If player 1 has m possible actions and player 2 has n possible actions, then each of the two matrices has m rows by n columns. When the row player selects the i-th action and the column player selects the j-th action, the payoff to the row player is A ,j/math> and the payoff to the column player is B ,j/math>. The players can also play
mixed strategies In game theory, a player's strategy is any of the options which they choose in a setting where the outcome depends ''not only'' on their own actions ''but'' on the actions of others. The discipline mainly concerns the action of a player in a game ...
. A mixed strategy for the row player is a non-negative vector x of length m such that: \sum_^m x_i = 1. Similarly, a mixed strategy for the column player is a non-negative vector y of length n such that: \sum_^n y_j = 1. When the players play mixed strategies with vectors x and y, the expected payoff of the row player is: x^\mathsf A y and of the column player: x^\mathsf B y.


Nash equilibrium in bimatrix games

Every bimatrix game has a
Nash equilibrium In game theory, the Nash equilibrium, named after the mathematician John Nash, is the most common way to define the solution of a non-cooperative game involving two or more players. In a Nash equilibrium, each player is assumed to know the equ ...
in (possibly) mixed strategies. Finding such a Nash equilibrium is a special case of the
Linear complementarity problem In mathematical optimization theory, the linear complementarity problem (LCP) arises frequently in computational mechanics and encompasses the well-known quadratic programming as a special case. It was proposed by Cottle and Dantzig in 1968. ...
and can be done in finite time by the Lemke–Howson algorithm. There is a reduction from the problem of finding a Nash equilibrium in a bimatrix game to the problem of finding a competitive equilibrium in an economy with Leontief utilities.


Related terms

A
zero-sum game Zero-sum game is a mathematical representation in game theory and economic theory of a situation which involves two sides, where the result is an advantage for one side and an equivalent loss for the other. In other words, player one's gain is ...
is a special case of a bimatrix game in which A+B = 0.


References

{{reflist Game theory game classes