In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a bijection, bijective function, or one-to-one correspondence is a
function between two
sets such that each element of the second set (the
codomain
In mathematics, a codomain, counter-domain, or set of destination of a function is a set into which all of the output of the function is constrained to fall. It is the set in the notation . The term '' range'' is sometimes ambiguously used to ...
) is the image of exactly one element of the first set (the
domain). Equivalently, a bijection is a
relation between two sets such that each element of either set is paired with exactly one element of the other set.
A function is bijective if it is
invertible
In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers.
Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that ...
; that is, a function
is bijective if and only if there is a function
the ''inverse'' of , such that each of the two ways for
composing the two functions produces an
identity function
Graph of the identity function on the real numbers
In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unc ...
:
for each
in
and
for each
in
For example, the ''multiplication by two'' defines a bijection from the
integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s to the
even number
In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is divisible by 2, and odd if it is not.. For example, −4, 0, and 82 are even numbers, while −3, 5, 23, and 69 are odd numbers.
The ...
s, which has the ''division by two'' as its inverse function.
A function is bijective if and only if it is both
injective
In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, impl ...
(or ''one-to-one'')—meaning that each element in the codomain is mapped from at most one element of the domain—and
surjective
In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a f ...
(or ''onto'')—meaning that each element of the codomain is mapped from at least one element of the domain. The term ''one-to-one correspondence'' must not be confused with ''
one-to-one function
In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, impl ...
'', which means injective but not necessarily surjective.
The elementary operation of
counting
Counting is the process of determining the number of elements of a finite set of objects; that is, determining the size of a set. The traditional way of counting consists of continually increasing a (mental or spoken) counter by a unit for ever ...
establishes a bijection from some
finite set
In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example,
is a finite set with five elements. Th ...
to the first
natural number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s , up to the number of elements in the counted set. It results that two finite sets have the same number of elements if and only if there exists a bijection between them. More generally, two sets are said to have the same
cardinal number
In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the cas ...
if there exists a bijection between them.
A bijective function from a set to itself is also called a
permutation
In mathematics, a permutation of a set can mean one of two different things:
* an arrangement of its members in a sequence or linear order, or
* the act or process of changing the linear order of an ordered set.
An example of the first mean ...
, and the set of all permutations of a set forms its
symmetric group
In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric grou ...
.
Some bijections with further properties have received specific names, which include
automorphism
In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphism ...
s,
isomorphism
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
s,
homeomorphism
In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function ...
s,
diffeomorphism
In mathematics, a diffeomorphism is an isomorphism of differentiable manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are continuously differentiable.
Definit ...
s,
permutation group
In mathematics, a permutation group is a group ''G'' whose elements are permutations of a given set ''M'' and whose group operation is the composition of permutations in ''G'' (which are thought of as bijective functions from the set ''M'' to ...
s, and most
geometric transformations.
Galois correspondences are bijections between sets of
mathematical object
A mathematical object is an abstract concept arising in mathematics. Typically, a mathematical object can be a value that can be assigned to a Glossary of mathematical symbols, symbol, and therefore can be involved in formulas. Commonly encounter ...
s of apparently very different nature.
Definition
For a
binary relation
In mathematics, a binary relation associates some elements of one Set (mathematics), set called the ''domain'' with some elements of another set called the ''codomain''. Precisely, a binary relation over sets X and Y is a set of ordered pairs ...
pairing elements of set ''X'' with elements of set ''Y'' to be a bijection, four properties must hold:
# each element of ''X'' must be paired with at least one element of ''Y'',
# no element of ''X'' may be paired with more than one element of ''Y'',
# each element of ''Y'' must be paired with at least one element of ''X'', and
# no element of ''Y'' may be paired with more than one element of ''X''.
Satisfying properties (1) and (2) means that a pairing is a
function with
domain ''X''. It is more common to see properties (1) and (2) written as a single statement: Every element of ''X'' is paired with exactly one element of ''Y''. Functions which satisfy property (3) are said to be "
onto
In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a f ...
''Y'' " and are called
surjections (or ''surjective functions''). Functions which satisfy property (4) are said to be "
one-to-one function
In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, impl ...
s" and are called
injections (or ''injective functions''). With this terminology, a bijection is a function which is both a surjection and an injection, or using other words, a bijection is a function which is both "one-to-one" and "onto".
Examples
Batting line-up of a baseball or cricket team
Consider the
batting line-up of a baseball or
cricket
Cricket is a Bat-and-ball games, bat-and-ball game played between two Sports team, teams of eleven players on a cricket field, field, at the centre of which is a cricket pitch, pitch with a wicket at each end, each comprising two Bail (cr ...
team (or any list of all the players of any sports team where every player holds a specific spot in a line-up). The set ''X'' will be the players on the team (of size nine in the case of baseball) and the set ''Y'' will be the positions in the batting order (1st, 2nd, 3rd, etc.) The "pairing" is given by which player is in what position in this order. Property (1) is satisfied since each player is somewhere in the list. Property (2) is satisfied since no player bats in two (or more) positions in the order. Property (3) says that for each position in the order, there is some player batting in that position and property (4) states that two or more players are never batting in the same position in the list.
Seats and students of a classroom
In a classroom there are a certain number of seats. A group of students enter the room and the instructor asks them to be seated. After a quick look around the room, the instructor declares that there is a bijection between the set of students and the set of seats, where each student is paired with the seat they are sitting in. What the instructor observed in order to reach this conclusion was that:
# Every student was in a seat (there was no one standing),
# No student was in more than one seat,
# Every seat had someone sitting there (there were no empty seats), and
# No seat had more than one student in it.
The instructor was able to conclude that there were just as many seats as there were students, without having to count either set.
More mathematical examples

* For any set ''X'', the
identity function
Graph of the identity function on the real numbers
In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unc ...
1
''X'': ''X'' → ''X'', 1
''X''(''x'') = ''x'' is bijective.
* The function ''f'': R → R, ''f''(''x'') = 2''x'' + 1 is bijective, since for each ''y'' there is a unique ''x'' = (''y'' − 1)/2 such that ''f''(''x'') = ''y''. More generally, any
linear function
In mathematics, the term linear function refers to two distinct but related notions:
* In calculus and related areas, a linear function is a function whose graph is a straight line, that is, a polynomial function of degree zero or one. For di ...
over the reals, ''f'': R → R, ''f''(''x'') = ''ax'' + ''b'' (where ''a'' is non-zero) is a bijection. Each real number ''y'' is obtained from (or paired with) the real number ''x'' = (''y'' − ''b'')/''a''.
* The function ''f'': R → (−π/2, π/2), given by ''f''(''x'') = arctan(''x'') is bijective, since each real number ''x'' is paired with exactly one angle ''y'' in the interval (−π/2, π/2) so that tan(''y'') = ''x'' (that is, ''y'' = arctan(''x'')). If the
codomain
In mathematics, a codomain, counter-domain, or set of destination of a function is a set into which all of the output of the function is constrained to fall. It is the set in the notation . The term '' range'' is sometimes ambiguously used to ...
(−π/2, π/2) was made larger to include an integer multiple of π/2, then this function would no longer be onto (surjective), since there is no real number which could be paired with the multiple of π/2 by this arctan function.
* The
exponential function, ''g'': R → R, ''g''(''x'') = e
''x'', is not bijective: for instance, there is no ''x'' in R such that ''g''(''x'') = −1, showing that ''g'' is not onto (surjective). However, if the codomain is restricted to the positive real numbers
, then ''g'' would be bijective; its inverse (see below) is the
natural logarithm
The natural logarithm of a number is its logarithm to the base of a logarithm, base of the e (mathematical constant), mathematical constant , which is an Irrational number, irrational and Transcendental number, transcendental number approxima ...
function ln.
* The function ''h'': R → R
+, ''h''(''x'') = ''x''
2 is not bijective: for instance, ''h''(−1) = ''h''(1) = 1, showing that ''h'' is not one-to-one (injective). However, if the
domain is restricted to