HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the
codomain In mathematics, a codomain, counter-domain, or set of destination of a function is a set into which all of the output of the function is constrained to fall. It is the set in the notation . The term '' range'' is sometimes ambiguously used to ...
) is the image of exactly one element of the first set (the domain). Equivalently, a bijection is a relation between two sets such that each element of either set is paired with exactly one element of the other set. A function is bijective if it is
invertible In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers. Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that ...
; that is, a function f:X\to Y is bijective if and only if there is a function g:Y\to X, the ''inverse'' of , such that each of the two ways for composing the two functions produces an
identity function Graph of the identity function on the real numbers In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unc ...
: g(f(x)) = x for each x in X and f(g(y)) = y for each y in Y. For example, the ''multiplication by two'' defines a bijection from the
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s to the
even number In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is divisible by 2, and odd if it is not.. For example, −4, 0, and 82 are even numbers, while −3, 5, 23, and 69 are odd numbers. The ...
s, which has the ''division by two'' as its inverse function. A function is bijective if and only if it is both
injective In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, impl ...
(or ''one-to-one'')—meaning that each element in the codomain is mapped from at most one element of the domain—and
surjective In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a f ...
(or ''onto'')—meaning that each element of the codomain is mapped from at least one element of the domain. The term ''one-to-one correspondence'' must not be confused with ''
one-to-one function In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, impl ...
'', which means injective but not necessarily surjective. The elementary operation of
counting Counting is the process of determining the number of elements of a finite set of objects; that is, determining the size of a set. The traditional way of counting consists of continually increasing a (mental or spoken) counter by a unit for ever ...
establishes a bijection from some
finite set In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, is a finite set with five elements. Th ...
to the first
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s , up to the number of elements in the counted set. It results that two finite sets have the same number of elements if and only if there exists a bijection between them. More generally, two sets are said to have the same
cardinal number In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the cas ...
if there exists a bijection between them. A bijective function from a set to itself is also called a
permutation In mathematics, a permutation of a set can mean one of two different things: * an arrangement of its members in a sequence or linear order, or * the act or process of changing the linear order of an ordered set. An example of the first mean ...
, and the set of all permutations of a set forms its
symmetric group In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric grou ...
. Some bijections with further properties have received specific names, which include
automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphism ...
s,
isomorphism In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
s,
homeomorphism In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function ...
s,
diffeomorphism In mathematics, a diffeomorphism is an isomorphism of differentiable manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are continuously differentiable. Definit ...
s,
permutation group In mathematics, a permutation group is a group ''G'' whose elements are permutations of a given set ''M'' and whose group operation is the composition of permutations in ''G'' (which are thought of as bijective functions from the set ''M'' to ...
s, and most geometric transformations. Galois correspondences are bijections between sets of
mathematical object A mathematical object is an abstract concept arising in mathematics. Typically, a mathematical object can be a value that can be assigned to a Glossary of mathematical symbols, symbol, and therefore can be involved in formulas. Commonly encounter ...
s of apparently very different nature.


Definition

For a
binary relation In mathematics, a binary relation associates some elements of one Set (mathematics), set called the ''domain'' with some elements of another set called the ''codomain''. Precisely, a binary relation over sets X and Y is a set of ordered pairs ...
pairing elements of set ''X'' with elements of set ''Y'' to be a bijection, four properties must hold: # each element of ''X'' must be paired with at least one element of ''Y'', # no element of ''X'' may be paired with more than one element of ''Y'', # each element of ''Y'' must be paired with at least one element of ''X'', and # no element of ''Y'' may be paired with more than one element of ''X''. Satisfying properties (1) and (2) means that a pairing is a function with domain ''X''. It is more common to see properties (1) and (2) written as a single statement: Every element of ''X'' is paired with exactly one element of ''Y''. Functions which satisfy property (3) are said to be "
onto In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a f ...
''Y'' " and are called surjections (or ''surjective functions''). Functions which satisfy property (4) are said to be "
one-to-one function In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, impl ...
s" and are called injections (or ''injective functions''). With this terminology, a bijection is a function which is both a surjection and an injection, or using other words, a bijection is a function which is both "one-to-one" and "onto".


Examples


Batting line-up of a baseball or cricket team

Consider the batting line-up of a baseball or
cricket Cricket is a Bat-and-ball games, bat-and-ball game played between two Sports team, teams of eleven players on a cricket field, field, at the centre of which is a cricket pitch, pitch with a wicket at each end, each comprising two Bail (cr ...
team (or any list of all the players of any sports team where every player holds a specific spot in a line-up). The set ''X'' will be the players on the team (of size nine in the case of baseball) and the set ''Y'' will be the positions in the batting order (1st, 2nd, 3rd, etc.) The "pairing" is given by which player is in what position in this order. Property (1) is satisfied since each player is somewhere in the list. Property (2) is satisfied since no player bats in two (or more) positions in the order. Property (3) says that for each position in the order, there is some player batting in that position and property (4) states that two or more players are never batting in the same position in the list.


Seats and students of a classroom

In a classroom there are a certain number of seats. A group of students enter the room and the instructor asks them to be seated. After a quick look around the room, the instructor declares that there is a bijection between the set of students and the set of seats, where each student is paired with the seat they are sitting in. What the instructor observed in order to reach this conclusion was that: # Every student was in a seat (there was no one standing), # No student was in more than one seat, # Every seat had someone sitting there (there were no empty seats), and # No seat had more than one student in it. The instructor was able to conclude that there were just as many seats as there were students, without having to count either set.


More mathematical examples

* For any set ''X'', the
identity function Graph of the identity function on the real numbers In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unc ...
1''X'': ''X'' → ''X'', 1''X''(''x'') = ''x'' is bijective. * The function ''f'': R → R, ''f''(''x'') = 2''x'' + 1 is bijective, since for each ''y'' there is a unique ''x'' = (''y'' − 1)/2 such that ''f''(''x'') = ''y''. More generally, any
linear function In mathematics, the term linear function refers to two distinct but related notions: * In calculus and related areas, a linear function is a function whose graph is a straight line, that is, a polynomial function of degree zero or one. For di ...
over the reals, ''f'': R → R, ''f''(''x'') = ''ax'' + ''b'' (where ''a'' is non-zero) is a bijection. Each real number ''y'' is obtained from (or paired with) the real number ''x'' = (''y'' − ''b'')/''a''. * The function ''f'': R → (−π/2, π/2), given by ''f''(''x'') = arctan(''x'') is bijective, since each real number ''x'' is paired with exactly one angle ''y'' in the interval (−π/2, π/2) so that tan(''y'') = ''x'' (that is, ''y'' = arctan(''x'')). If the
codomain In mathematics, a codomain, counter-domain, or set of destination of a function is a set into which all of the output of the function is constrained to fall. It is the set in the notation . The term '' range'' is sometimes ambiguously used to ...
(−π/2, π/2) was made larger to include an integer multiple of π/2, then this function would no longer be onto (surjective), since there is no real number which could be paired with the multiple of π/2 by this arctan function. * The exponential function, ''g'': R → R, ''g''(''x'') = e''x'', is not bijective: for instance, there is no ''x'' in R such that ''g''(''x'') = −1, showing that ''g'' is not onto (surjective). However, if the codomain is restricted to the positive real numbers \R^+ \equiv \left(0, \infty\right), then ''g'' would be bijective; its inverse (see below) is the
natural logarithm The natural logarithm of a number is its logarithm to the base of a logarithm, base of the e (mathematical constant), mathematical constant , which is an Irrational number, irrational and Transcendental number, transcendental number approxima ...
function ln. * The function ''h'': R → R+, ''h''(''x'') = ''x''2 is not bijective: for instance, ''h''(−1) = ''h''(1) = 1, showing that ''h'' is not one-to-one (injective). However, if the domain is restricted to \R^+_0 \equiv \left , \infty\right), then ''h'' would be bijective; its inverse is the positive square root function. *By Schröder–Bernstein theorem, given any two sets ''X'' and ''Y'', and two injective functions ''f'': ''X → Y'' and ''g'': ''Y → X'', there exists a bijective function ''h'': ''X → Y''.


Inverses

A bijection ''f'' with domain ''X'' (indicated by ''f'': ''X → Y'' in Function (mathematics)#Notation">functional notation In mathematics, a function from a set to a set assigns to each element of exactly one element of .; the words ''map'', ''mapping'', ''transformation'', ''correspondence'', and ''operator'' are sometimes used synonymously. The set is called ...
) also defines a converse relation starting in ''Y'' and going to ''X'' (by turning the arrows around). The process of "turning the arrows around" for an arbitrary function does not, ''in general'', yield a function, but properties (3) and (4) of a bijection say that this inverse relation is a function with domain ''Y''. Moreover, properties (1) and (2) then say that this inverse ''function'' is a surjection and an injection, that is, the
inverse function In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of . The inverse of exists if and only if is bijective, and if it exists, is denoted by f^ . For a function f\colon ...
exists and is also a bijection. Functions that have inverse functions are said to be
invertible In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers. Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that ...
. A function is invertible if and only if it is a bijection. Stated in concise mathematical notation, a function ''f'': ''X → Y'' is bijective if and only if it satisfies the condition :for every ''y'' in ''Y'' there is a unique ''x'' in ''X'' with ''y'' = ''f''(''x''). Continuing with the baseball batting line-up example, the function that is being defined takes as input the name of one of the players and outputs the position of that player in the batting order. Since this function is a bijection, it has an inverse function which takes as input a position in the batting order and outputs the player who will be batting in that position.


Composition

The composition g \,\circ\, f of two bijections ''f'': ''X → Y'' and ''g'': ''Y → Z'' is a bijection, whose inverse is given by g \,\circ\, f is (g \,\circ\, f)^ \;=\; (f^) \,\circ\, (g^). Conversely, if the composition g \, \circ\, f of two functions is bijective, it only follows that ''f'' is
injective In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, impl ...
and ''g'' is
surjective In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a f ...
.


Cardinality

If ''X'' and ''Y'' are
finite set In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, is a finite set with five elements. Th ...
s, then there exists a bijection between the two sets ''X'' and ''Y''
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
''X'' and ''Y'' have the same number of elements. Indeed, in
axiomatic set theory Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathema ...
, this is taken as the definition of "same number of elements" ( equinumerosity), and generalising this definition to
infinite set In set theory, an infinite set is a set that is not a finite set. Infinite sets may be countable or uncountable. Properties The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. It is the only set ...
s leads to the concept of
cardinal number In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the cas ...
, a way to distinguish the various sizes of infinite sets.


Properties

* A function ''f'': R → R is bijective if and only if its graph meets every horizontal and vertical line exactly once. * If ''X'' is a set, then the bijective functions from ''X'' to itself, together with the operation of functional composition (\circ), form a group, the
symmetric group In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric grou ...
of ''X'', which is denoted variously by S(''X''), ''SX'', or ''X''! (''X''
factorial In mathematics, the factorial of a non-negative denoted is the Product (mathematics), product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial: \begin n! &= n \times ...
). * Bijections preserve cardinalities of sets: for a subset ''A'' of the domain with cardinality , ''A'', and subset ''B'' of the codomain with cardinality , ''B'', , one has the following equalities: *:, ''f''(''A''), = , ''A'', and , ''f''−1(''B''), = , ''B'', . *If ''X'' and ''Y'' are
finite set In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, is a finite set with five elements. Th ...
s with the same cardinality, and ''f'': ''X → Y'', then the following are equivalent: *# ''f'' is a bijection. *# ''f'' is a
surjection In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a f ...
. *# ''f'' is an injection. *For a finite set ''S'', there is a bijection between the set of possible
total ordering In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( re ...
s of the elements and the set of bijections from ''S'' to ''S''. That is to say, the number of
permutation In mathematics, a permutation of a set can mean one of two different things: * an arrangement of its members in a sequence or linear order, or * the act or process of changing the linear order of an ordered set. An example of the first mean ...
s of elements of ''S'' is the same as the number of total orderings of that set—namely, ''n''!.


Category theory

Bijections are precisely the
isomorphism In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
s in the
category Category, plural categories, may refer to: General uses *Classification, the general act of allocating things to classes/categories Philosophy * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) * Category ( ...
''
Set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
'' of sets and set functions. However, the bijections are not always the isomorphisms for more complex categories. For example, in the category '' Grp'' of groups, the morphisms must be
homomorphism In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
s since they must preserve the group structure, so the isomorphisms are ''group isomorphisms'' which are bijective homomorphisms.


Generalization to partial functions

The notion of one-to-one correspondence generalizes to partial functions, where they are called ''partial bijections'', although partial bijections are only required to be injective. The reason for this relaxation is that a (proper) partial function is already undefined for a portion of its domain; thus there is no compelling reason to constrain its inverse to be a
total function In mathematics, a partial function from a set to a set is a function from a subset of (possibly the whole itself) to . The subset , that is, the '' domain'' of viewed as a function, is called the domain of definition or natural domain o ...
, i.e. defined everywhere on its domain. The set of all partial bijections on a given base set is called the symmetric inverse semigroup. Another way of defining the same notion is to say that a partial bijection from ''A'' to ''B'' is any relation ''R'' (which turns out to be a partial function) with the property that ''R'' is the graph of a bijection ''f'':'→', where ' is a
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
of ''A'' and ' is a subset of ''B''. When the partial bijection is on the same set, it is sometimes called a ''one-to-one partial transformation''. An example is the
Möbius transformation In geometry and complex analysis, a Möbius transformation of the complex plane is a rational function of the form f(z) = \frac of one complex number, complex variable ; here the coefficients , , , are complex numbers satisfying . Geometrically ...
simply defined on the complex plane, rather than its completion to the extended complex plane.preprint
citing


Gallery


See also

* Ax–Grothendieck theorem * Bijection, injection and surjection * Bijective numeration * Bijective proof *
Category theory Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory ...
*
Multivalued function In mathematics, a multivalued function, multiple-valued function, many-valued function, or multifunction, is a function that has two or more values in its range for at least one point in its domain. It is a set-valued function with additional p ...


Notes


References

This topic is a basic concept in set theory and can be found in any text which includes an introduction to set theory. Almost all texts that deal with an introduction to writing proofs will include a section on set theory, so the topic may be found in any of these: * * * * * * * * * * * * * * * * * *


External links

* *
Earliest Uses of Some of the Words of Mathematics: entry on Injection, Surjection and Bijection has the history of Injection and related terms.
{{Mathematical logic Functions and mappings Basic concepts in set theory Mathematical relations Types of functions