In
mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a
function between the elements of two
sets, where each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set. There are no unpaired elements. In mathematical terms, a bijective function is a
one-to-one (injective) and
onto (surjective) mapping of a set ''X'' to a set ''Y''. The term ''one-to-one correspondence'' must not be confused with ''one-to-one function'' (an
injective function
In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contraposi ...
; see figures).
A bijection from the set ''X'' to the set ''Y'' has an
inverse function
In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of . The inverse of exists if and only if is bijective, and if it exists, is denoted by f^ .
For a function f\colon ...
from ''Y'' to ''X''. If ''X'' and ''Y'' are
finite set
In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example,
:\
is a finite set with five elements. ...
s, then the existence of a bijection means they have the same number of elements. For
infinite set
In set theory, an infinite set is a set that is not a finite set. Infinite sets may be countable or uncountable.
Properties
The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. It is the only ...
s, the picture is more complicated, leading to the concept of
cardinal number
In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. T ...
—a way to distinguish the various sizes of infinite sets.
A bijective function from a set to itself is also called a ''
permutation
In mathematics, a permutation of a set is, loosely speaking, an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its elements. The word "permutation" also refers to the act or p ...
'', and the set of all permutations of a set forms the
symmetric group
In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group ...
.
Bijective functions are essential to many areas of mathematics including the definitions of
isomorphism,
homeomorphism
In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomor ...
,
diffeomorphism
In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are differentiable.
Definition
Given tw ...
,
permutation group, and
projective map
In projective geometry, a homography is an isomorphism of projective spaces, induced by an isomorphism of the vector spaces from which the projective spaces derive. It is a bijection that maps lines to lines, and thus a collineation. In general, s ...
.
Definition
For a pairing between ''X'' and ''Y'' (where ''Y'' need not be different from ''X'') to be a bijection, four properties must hold:
# each element of ''X'' must be paired with at least one element of ''Y'',
# no element of ''X'' may be paired with more than one element of ''Y'',
# each element of ''Y'' must be paired with at least one element of ''X'', and
# no element of ''Y'' may be paired with more than one element of ''X''.
Satisfying properties (1) and (2) means that a pairing is a
function with
domain ''X''. It is more common to see properties (1) and (2) written as a single statement: Every element of ''X'' is paired with exactly one element of ''Y''. Functions which satisfy property (3) are said to be "
onto ''Y'' " and are called
surjections (or ''surjective functions''). Functions which satisfy property (4) are said to be "
one-to-one function
In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contraposi ...
s" and are called
injections (or ''injective functions''). With this terminology, a bijection is a function which is both a surjection and an injection, or using other words, a bijection is a function which is both "one-to-one" and "onto".
Bijections are sometimes denoted by a two-headed rightwards arrow with tail (), as in ''f'' : ''X'' ⤖ ''Y''. This symbol is a combination of the two-headed rightwards arrow (), sometimes used to denote surjections, and the rightwards arrow with a barbed tail (), sometimes used to denote injections.
Examples
Batting line-up of a baseball or cricket team
Consider the
batting line-up of a baseball or
cricket
Cricket is a bat-and-ball game played between two teams of eleven players on a field at the centre of which is a pitch with a wicket at each end, each comprising two bails balanced on three stumps. The batting side scores runs by st ...
team (or any list of all the players of any sports team where every player holds a specific spot in a line-up). The set ''X'' will be the players on the team (of size nine in the case of baseball) and the set ''Y'' will be the positions in the batting order (1st, 2nd, 3rd, etc.) The "pairing" is given by which player is in what position in this order. Property (1) is satisfied since each player is somewhere in the list. Property (2) is satisfied since no player bats in two (or more) positions in the order. Property (3) says that for each position in the order, there is some player batting in that position and property (4) states that two or more players are never batting in the same position in the list.
Seats and students of a classroom
In a classroom there are a certain number of seats. A bunch of students enter the room and the instructor asks them to be seated. After a quick look around the room, the instructor declares that there is a bijection between the set of students and the set of seats, where each student is paired with the seat they are sitting in. What the instructor observed in order to reach this conclusion was that:
# Every student was in a seat (there was no one standing),
# No student was in more than one seat,
# Every seat had someone sitting there (there were no empty seats), and
# No seat had more than one student in it.
The instructor was able to conclude that there were just as many seats as there were students, without having to count either set.
More mathematical examples
* For any set ''X'', the
identity function
Graph of the identity function on the real numbers
In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unc ...
1
''X'': ''X'' → ''X'', 1
''X''(''x'') = ''x'' is bijective.
* The function ''f'': R → R, ''f''(''x'') = 2''x'' + 1 is bijective, since for each ''y'' there is a unique ''x'' = (''y'' − 1)/2 such that ''f''(''x'') = ''y''. More generally, any
linear function
In mathematics, the term linear function refers to two distinct but related notions:
* In calculus and related areas, a linear function is a function whose graph is a straight line, that is, a polynomial function of degree zero or one. For di ...
over the reals, ''f'': R → R, ''f''(''x'') = ''ax'' + ''b'' (where ''a'' is non-zero) is a bijection. Each real number ''y'' is obtained from (or paired with) the real number ''x'' = (''y'' − ''b'')/''a''.
* The function ''f'': R → (−π/2, π/2), given by ''f''(''x'') = arctan(''x'') is bijective, since each real number ''x'' is paired with exactly one angle ''y'' in the interval (−π/2, π/2) so that tan(''y'') = ''x'' (that is, ''y'' = arctan(''x'')). If the
codomain
In mathematics, the codomain or set of destination of a function is the set into which all of the output of the function is constrained to fall. It is the set in the notation . The term range is sometimes ambiguously used to refer to either ...
(−π/2, π/2) was made larger to include an integer multiple of π/2, then this function would no longer be onto (surjective), since there is no real number which could be paired with the multiple of π/2 by this arctan function.
* The
exponential function
The exponential function is a mathematical function denoted by f(x)=\exp(x) or e^x (where the argument is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, ...
, ''g'': R → R, ''g''(''x'') = e
''x'', is not bijective: for instance, there is no ''x'' in R such that ''g''(''x'') = −1, showing that ''g'' is not onto (surjective). However, if the codomain is restricted to the positive real numbers
, then ''g'' would be bijective; its inverse (see below) is the
natural logarithm
The natural logarithm of a number is its logarithm to the base of the mathematical constant , which is an irrational and transcendental number approximately equal to . The natural logarithm of is generally written as , , or sometimes, if ...
function ln.
* The function ''h'': R → R
+, ''h''(''x'') = ''x''
2 is not bijective: for instance, ''h''(−1) = ''h''(1) = 1, showing that ''h'' is not one-to-one (injective). However, if the
domain is restricted to