HOME

TheInfoList



OR:

In
mesoscopic physics Mesoscopic physics is a subdiscipline of condensed matter physics that deals with materials of an intermediate size. These materials range in size between the nanoscale for a quantity of atoms (such as a molecule) and of materials measuring micr ...
, ballistic conduction (ballistic transport) is the unimpeded flow (or transport) of
charge carrier In physics, a charge carrier is a particle or quasiparticle that is free to move, carrying an electric charge, especially the particles that carry electric charges in electrical conductors. Examples are electrons, ions and holes. The term is used ...
s (usually electrons), or energy-carrying particles, over relatively long distances in a material. In general, the resistivity of a material exists because an electron, while moving inside a medium, is scattered by impurities, defects, thermal fluctuations of ions in a
crystalline solid A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macrosc ...
, or, generally, by any freely-moving atom/molecule composing a gas or liquid. Without scattering, electrons simply obey
Newton's second law of motion Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: # A body remains at rest, or in motion ...
at non-relativistic speeds. The mean free path of a particle can be described as the average length that the particle can travel freely, i.e., before a collision, which could change its momentum. The mean free path can be increased by reducing the number of impurities in a crystal or by lowering its temperature. Ballistic transport is observed when the mean free path of the particle is (much) longer than the dimension of the medium through which the particle travels. The particle alters its motion only upon collision with the ''walls''. In the case of a wire suspended in air/vacuum the surface of the wire plays the role of the ''box'' reflecting the electrons and preventing them from exiting toward the empty space/open air. This is because there is an energy to be paid to extract the electron from the medium ( work function). Ballistic conduction is typically observed in quasi-1D structures, such as carbon nanotubes or silicon nanowires, because of extreme size quantization effects in these materials. Ballistic conduction is not limited to electrons (or holes) but can also apply to
phonon In physics, a phonon is a collective excitation in a periodic, Elasticity (physics), elastic arrangement of atoms or molecules in condensed matter physics, condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phon ...
s. It is theoretically possible for ballistic conduction to be extended to other quasi-particles, but this has not been experimentally verified. For a specific example, ballistic transport can be observed in a metal nanowire: due to the small size of the wire (
nanometer 330px, Different lengths as in respect to the molecular scale. The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm) or nanometer (American and British English spelling differences#-re ...
-scale or 10−9 meters scale) and the mean free path which can be longer than that in a metal. Ballistic conduction differs from
superconductivity Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike ...
due to the absence of the Meissner effect in the material. A ballistic conductor would stop conducting if the driving force is turned off, whereas in a superconductor current would continue to flow after the driving supply is disconnected.


Theory


Scattering mechanisms

In general, carriers will exhibit ballistic conduction when L \le \lambda_ where L is the length of the active part of the device (e.g., a channel in a
MOSFET The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, the voltage of which d ...
). \lambda_ is the mean free path for the carrier which can be given by Matthiessen's rule, written here for electrons: :\frac = \frac + \frac + \frac + \frac + \frac + \frac + \frac where * \lambda_\mathrm is the electron-electron scattering length, * \lambda_\mathrm is the acoustic phonon (emission and absorption) scattering length, * \lambda_\mathrm is the optical phonon emission scattering length, * \lambda_\mathrm is the optical phonon absorption scattering length, * \lambda_\mathrm is the electron-impurity scattering length, * \lambda_\mathrm is the electron-defect scattering length, * and \lambda_\mathrm is the electron scattering length with the boundary. In terms of scattering mechanisms,
optical phonon In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phonon is an excited state in the quantum mechani ...
emission normally dominates, depending on the material and transport conditions. There are also other scattering mechanisms which apply to different carriers that are not considered here (e.g. remote interface phonon scattering, Umklapp scattering). To get these characteristic scattering rates, one would need to derive a Hamiltonian and solve Fermi's golden rule for the system in question.


Landauer–Büttiker formalism

In 1957, Rolf Landauer proposed that conduction in a 1D system could be viewed as a transmission problem. For the 1D graphene nanoribbon field effect transistor (GNR-FET) on the right (where the channel is assumed to be ballistic), the current from A to B, given by the Boltzmann transport equation, is :I_ = \frac\int_^M(E)f^(E)T(E)dE, where ''g''s = 2, due to spin degeneracy, ''e'' is the electron charge, ''h'' is the Planck constant, E_ and E_ are the Fermi levels of ''A'' and ''B'', ''M''(''E'') is the number of propagating modes in the channel, ''f''′(''E'') is the deviation from the equilibrium electron distribution (perturbation), and ''T(E)'' is the transmission probability (''T'' = 1 for ballistic). Based on the definition of conductance :G = \frac, and the voltage separation between the Fermi levels is approximately eV = E_-E_, it follows that :G = G_0MT, with G_0=\frac where ''M'' is the number of modes in the transmission channel and spin is included. G_0 is known as the
conductance quantum The conductance quantum, denoted by the symbol , is the quantized unit of electrical conductance. It is defined by the elementary charge ''e'' and Planck constant ''h'' as: :G_0 = \frac = It appears when measuring the conductance of a quantum p ...
. The contacts have a multiplicity of modes due to their larger size in comparison to the channel. Conversely, the quantum confinement in the 1D GNR channel constricts the number of modes to carrier degeneracy and restrictions from the energy dispersion relationship and the Brillouin zone. For example, electrons in carbon nanotubes have two intervalley modes and two spin modes. Since the contacts and the GNR channel are connected by leads, the transmission probability is smaller at contacts ''A'' and ''B'', :T\approx\frac. Thus the quantum conductance is approximately the same if measured at A and B or C and D. The Landauer–Büttiker formalism holds as long as the carriers are
coherent Coherence, coherency, or coherent may refer to the following: Physics * Coherence (physics), an ideal property of waves that enables stationary (i.e. temporally and spatially constant) interference * Coherence (units of measurement), a deri ...
(which means the length of the active channel is less than the phase-breaking mean free path) and the transmission functions can be calculated from Schrödinger's equation or approximated by semiclassical approximations, like the WKB approximation. Therefore, even in the case of a perfect ballistic transport, there is a fundamental ballistic conductance which saturates the current of the device with a resistance of approximately 12.9 kΩ per mode (spin degeneracy included). There is, however, a generalization of the Landauer–Büttiker formalism of transport applicable to time-dependent problems in the presence of dissipation.


Importance

Ballistic conduction enables use of quantum mechanical properties of electron wave functions. Ballistic transport is coherent in wave mechanics terms. Phenomena like double-slit interference, spatial resonance (and other optical or microwave-like effects) could be exploited in electronic systems at nanoscale in systems including nanowires and nanotubes. The widely encountered phenomenon of electrical contact resistance or ECR, arises as an electric current flowing through a rough interface is restricted to a limited number of contact spots. The size and distribution of these contact spots is governed by the topological structures of the contacting surfaces forming the electrical contact. In particular, for surfaces with high fractal dimension contact spots may be very small. In such cases, when the radius of the contact spot is smaller than the mean free path of electrons \lambda , the resistance is dominated by the Sharvin mechanism, in which electrons travel ballistically through these micro-contacts with resistance that can be described by the following :R_ = \frac. This term, where \rho_1 and \rho_2 correspond to the specific resistivity of the two contacting surfaces, is known as Sharvin resistance. Electrical contacts resulting in ballistic electron conduction are known as ''Sharvin Contacts''. When the radius of a contact spot is larger than the mean free path of electrons, the contact resistance can be treated classically.


Optical analogies

A comparison with light provides an analogy between ballistic and non-ballistic conduction. Ballistic electrons behave like light in a waveguide or a high-quality optical assembly. Non-ballistic electrons behave like light diffused in milk or reflected off a white wall or a piece of paper. Electrons can be scattered several ways in a conductor. Electrons have several properties: wavelength (energy), direction, phase, and spin orientation. Different materials have different scattering probabilities which cause different incoherence rates (stochasticity). Some kinds of scattering can only cause a change in electron direction, others can cause energy loss. Consider a coherent source of electrons connected to a conductor. Over a limited distance, the electron wave function will remain coherent. You still can deterministically predict its behavior (and use it for computation theoretically). After some greater distance, scattering causes each electron to have a slightly different
phase Phase or phases may refer to: Science *State of matter, or phase, one of the distinct forms in which matter can exist *Phase (matter), a region of space throughout which all physical properties are essentially uniform * Phase space, a mathematic ...
and/or direction. But there is still almost no energy loss. Like
monochromatic A monochrome or monochromatic image, object or color scheme, palette is composed of one color (or lightness, values of one color). Images using only Tint, shade and tone, shades of grey are called grayscale (typically digital) or Black and wh ...
light passing through milk, electrons undergo
elastic Elastic is a word often used to describe or identify certain types of elastomer, elastic used in garments or stretchable fabrics. Elastic may also refer to: Alternative name * Rubber band, ring-shaped band of rubber used to hold objects togeth ...
interactions. Information about the state of the electrons at the input is then lost. Transport becomes
statistical Statistics (from German: ''Statistik'', "description of a state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industria ...
and
stochastic Stochastic (, ) refers to the property of being well described by a random probability distribution. Although stochasticity and randomness are distinct in that the former refers to a modeling approach and the latter refers to phenomena themselv ...
. From the resistance point of view, stochastic (not oriented) movement of electrons is useless even if they carry the same energy – they move thermally. If the electrons undergo inelastic interactions too, they lose energy and the result is a second mechanism of resistance. Electrons which undergo inelastic interaction are then similar to non-monochromatic light. For correct usage of this analogy consideration of several facts is needed: #
photons A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they alway ...
are
bosons In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0,1,2 ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have odd half-integer spi ...
and electrons are fermions; # there is coulombic repulsion between electrons thus this analogy is good only for single-electron conduction because electron processes are strongly
nonlinear In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other ...
and dependent on other electrons; # it is more likely that an electron would lose more energy than a photon would, because of the electron's non-zero rest mass; # electron interactions with the environment, each other, and other particles are generally stronger than interactions with and between photons.


Examples

As mentioned, nanostructures such as carbon nanotubes or graphene nanoribbons are often considered ballistic, but these devices only very closely resemble ballistic conduction. Their ballisticity is nearly 0.9 at room temperature.


Carbon nanotubes and graphene nanoribbon

The dominant scattering mechanism at room temperature is that of electrons emitting optical phonons. If electrons don't scatter with enough phonons (for example if the scattering rate is low), the mean free path tends to be very long (\lambda_ \approx 1m). So a nanotube or graphene nanoribbon could be a good ballistic conductor if the electrons in transit don't scatter with too many phonons and if the device is about 100 nm long. Such a transport regime has been found to depend on the nanoribbon edge structure and the electron energy.


Silicon nanowires

It is often incorrectly thought that Si nanowires are quantum confined ballistic conductors. There are major differences between carbon nanotubes (which are hollow) and Si nanowires (which are solid). Nanowires are about 20–50 nm in diameter and are 3D solid while carbon nanotubes have diameters around the wavelength of the electrons (2–3 nm) and are essentially 1D conductors. However it is still possible to observe ballistic conduction in Si nanowires at very low temperatures (2–3 K).


Isotopically enriched diamond

Isotopically pure diamond An isotopical pure diamond is a type of diamond that is composed entirely of one isotope of carbon. Isotopically pure diamonds have been manufactured from either the more common carbon isotope with mass number 12 (abbreviated as 12C) or the less c ...
can have a significantly higher thermal conductivity. See List of thermal conductivities.


See also

* * * *


References


Further reading

* * {{DEFAULTSORT:Ballistic Conduction Nanoelectronics Charge carriers Mesoscopic physics