HOME

TheInfoList



OR:

Bacterioplankton refers to the bacterial component of the
plankton Plankton are the diverse collection of organisms that drift in Hydrosphere, water (or atmosphere, air) but are unable to actively propel themselves against ocean current, currents (or wind). The individual organisms constituting plankton are ca ...
that drifts in the water column. The name comes from the
Ancient Greek Ancient Greek (, ; ) includes the forms of the Greek language used in ancient Greece and the classical antiquity, ancient world from around 1500 BC to 300 BC. It is often roughly divided into the following periods: Mycenaean Greek (), Greek ...
word (), meaning "wandering" or "drifting", and , a
Latin Latin ( or ) is a classical language belonging to the Italic languages, Italic branch of the Indo-European languages. Latin was originally spoken by the Latins (Italic tribe), Latins in Latium (now known as Lazio), the lower Tiber area aroun ...
term coined in the 19th century by
Christian Gottfried Ehrenberg Christian Gottfried Ehrenberg (19 April 1795 – 27 June 1876) was a German Natural history, naturalist, zoologist, Botany, botanist, comparative anatomist, geologist, and microscopy, microscopist. He is considered to be one of the most famous an ...
. They are found in both
seawater Seawater, or sea water, is water from a sea or ocean. On average, seawater in the world's oceans has a salinity of about 3.5% (35 g/L, 35 ppt, 600 mM). This means that every kilogram (roughly one liter by volume) of seawater has approximat ...
and
fresh water Fresh water or freshwater is any naturally occurring liquid or frozen water containing low concentrations of dissolved salt (chemistry), salts and other total dissolved solids. The term excludes seawater and brackish water, but it does include ...
. Bacterioplankton occupy a range of
ecological niche In ecology, a niche is the match of a species to a specific environmental condition. Three variants of ecological niche are described by It describes how an organism or population responds to the distribution of Resource (biology), resources an ...
s in marine and aquatic ecosystems. They are both primary producers and primary consumers in these ecosystems and drive global biogeochemical cycling of elements essential for life (e.g., carbon and nitrogen). Many bacterioplankton species are
autotroph An autotroph is an organism that can convert Abiotic component, abiotic sources of energy into energy stored in organic compounds, which can be used by Heterotroph, other organisms. Autotrophs produce complex organic compounds (such as carbohy ...
ic, and derive energy from either
photosynthesis Photosynthesis ( ) is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabo ...
or chemosynthesis. Photosynthetic bacterioplankton are often categorized as picophytoplankton, and include major
cyanobacteria Cyanobacteria ( ) are a group of autotrophic gram-negative bacteria that can obtain biological energy via oxygenic photosynthesis. The name "cyanobacteria" () refers to their bluish green (cyan) color, which forms the basis of cyanobacteri ...
l groups such as ''
Prochlorococcus ''Prochlorococcus'' is a genus of very small (0.6  μm) marine cyanobacteria with an unusual pigmentation ( chlorophyll ''a2'' and ''b2''). These bacteria belong to the photosynthetic picoplankton and are probably the most abundant photosyn ...
'' and '' Synechococcus''. Other heterotrophic bacterioplankton are
saprotroph Saprotrophic nutrition or lysotrophic nutrition is a process of chemoheterotrophic extracellular digestion involved in the processing of decayed (dead or waste) organic matter. It occurs in saprotrophs, and is most often associated with fungi ...
ic, and obtain energy by consuming organic material produced by other organisms. This material may be dissolved in the medium and taken directly from there, or bacteria may live and grow in association with particulate material such as marine snow. Bacterioplankton play critical roles in global
nitrogen fixation Nitrogen fixation is a chemical process by which molecular dinitrogen () is converted into ammonia (). It occurs both biologically and abiological nitrogen fixation, abiologically in chemical industry, chemical industries. Biological nitrogen ...
, nitrification, denitrification, remineralisation and
methanogen Methanogens are anaerobic archaea that produce methane as a byproduct of their energy metabolism, i.e., catabolism. Methane production, or methanogenesis, is the only biochemical pathway for Adenosine triphosphate, ATP generation in methanogens. A ...
esis. Bacterioplankton abundance depends on environmental variables like temperature, nutrient availability and predation. Like other small plankton, the bacterioplankton are preyed upon by zooplankton (usually
protozoa Protozoa (: protozoan or protozoon; alternative plural: protozoans) are a polyphyletic group of single-celled eukaryotes, either free-living or parasitic, that feed on organic matter such as other microorganisms or organic debris. Historically ...
ns), and their numbers are also controlled through
infection An infection is the invasion of tissue (biology), tissues by pathogens, their multiplication, and the reaction of host (biology), host tissues to the infectious agent and the toxins they produce. An infectious disease, also known as a transmis ...
by
bacteriophage A bacteriophage (), also known informally as a phage (), is a virus that infects and replicates within bacteria. The term is derived . Bacteriophages are composed of proteins that Capsid, encapsulate a DNA or RNA genome, and may have structu ...
s.


Major groups


Photosynthetic bacterioplankton

Photosynthetic bacterioplankton are responsible for a large proportion of the total
primary production In ecology, primary production is the synthesis of organic compounds from atmospheric or aqueous carbon dioxide. It principally occurs through the process of photosynthesis, which uses light as its source of energy, but it also occurs through ...
of aquatic food webs, supplying organic compounds to higher trophic levels. These bacteria undergo oxygenic and
anoxygenic photosynthesis Anoxygenic photosynthesis is a special form of photosynthesis used by some bacteria and archaea, which differs from the better known oxygenic photosynthesis in plants in the reductant used (e.g. hydrogen sulfide instead of water) and the byproduc ...
. Differences between these processes can be seen in the byproducts produced, the primary electron donor, and the light harvesting pigments used for energy capture.
Cyanobacteria Cyanobacteria ( ) are a group of autotrophic gram-negative bacteria that can obtain biological energy via oxygenic photosynthesis. The name "cyanobacteria" () refers to their bluish green (cyan) color, which forms the basis of cyanobacteri ...
are a large group of photosynthetic bacterioplankton, often growing as cells or in filamentous colonies. These organisms are the dominant group of bacterioplankton using oxygenic photosynthesis in aquatic ecosystems. Cyanobacteria, along with photosynthetic eukaryotes, are responsible for approximately half of the total global primary production making them key players in the food web. They use photosynthesis to generate energy in the form of organic compounds and produce oxygen as a byproduct. Major light harvesting pigments include
chlorophyll Chlorophyll is any of several related green pigments found in cyanobacteria and in the chloroplasts of algae and plants. Its name is derived from the Greek words (, "pale green") and (, "leaf"). Chlorophyll allows plants to absorb energy ...
s, phycoerytherin,
phycocyanin Phycocyanin is a pigment-protein complex from the light-harvesting phycobiliprotein family, along with allophycocyanin and phycoerythrin. It is an accessory pigment to chlorophyll. All phycobiliproteins are water-soluble, so they cannot exist ...
and carotenoids. The majority of cyanobacteria found in marine environments are represented by the genera '' Synechococcus'' and ''
Prochlorococcus ''Prochlorococcus'' is a genus of very small (0.6  μm) marine cyanobacteria with an unusual pigmentation ( chlorophyll ''a2'' and ''b2''). These bacteria belong to the photosynthetic picoplankton and are probably the most abundant photosyn ...
. Synechococcus'' is cosmopolitan, having been reported across temperate and tropical waters. ''Prochlorococcus'' is a very small in size and is found mainly in the euphotic zone of tropical waters. Factors including light, nutrients, and temperature can cause cyanobacteria to proliferate and form harmful blooms. Cyanobacteria blooms can cause hypoxia and produce high levels of toxins, impacting other aquatic organisms as well as causing illnesses in humans. Some Cyanobacteria are capable of
nitrogen fixation Nitrogen fixation is a chemical process by which molecular dinitrogen () is converted into ammonia (). It occurs both biologically and abiological nitrogen fixation, abiologically in chemical industry, chemical industries. Biological nitrogen ...
. The genus '' Anabaena'' uses specialized cells called heterocysts to physically separate nitrogen fixation and photosynthesis. '' Trichodesmium'' is an example of cyanobacteria that is capable of fixing nitrogen through an alternative photosynthetic pathway. Other photosynthetic bacterioplankton, including purple and green bacteria, undergo anoxygenic photosynthesis in anaerobic conditions. The pigments synthesized in these organisms are sensitive to oxygen. In purple bacteria the major pigments include bacteriochlorophyll a and b and carotenoids. Green bacteria have different light harvesting pigments consisting of bacteriochlorophyll c, d and e. These organisms do not produce oxygen through photosynthesis or use water as a reducing agent. Many of these organisms use sulfur, hydrogen or other compounds as an energy source to drive photosynthesis. Most of these bacterioplankton are found in anoxic waters, including stagnant and hypersaline environments.


Heterotrophic bacterioplankton

Heterotrophic bacterioplankton rely on the available concentration of dissolved organic matter in the water column. Usually these organisms are saprophytic, absorbing nutrients from their surroundings. These heterotrophs also play a key role in the microbial loop and the remineralization of organic compounds like carbon and nitrogen. Pelagibacterales (synonym SAR11), also known as members of an '' Alphaproteobacteria'' clade, are the most abundant bacterioplankton in the oceans. Members of this group are found in waters with low nutrient availability and are preyed on by protists. '' Roseobacter'' is a diverse and widely distributed clade which makes up a significant contribution of marine bacterioplankton, accounting up to roughly 20% of coastal waters and 15%
mixed layer The oceanic or limnological mixed layer is a layer in which active turbulence has homogenized some range of depths. The surface mixed layer is a layer where this turbulence is generated by winds, surface heat fluxes, or processes such as evaporat ...
surface oceans. Although many are heterotrophic, some are capable of performing a unique form of photosynthesis called aerobic anoxygenic phototrophy, which requires rather than produces oxygen.


Biogeochemical cycling


Carbon

Atmospheric carbon is sequestered into the ocean by three main pumps which have been known for 30 years: the solubility pump, the carbonate pump, and the biological carbon pump (BCP). The biological carbon pump is a vertical transmission pump driven mainly by the sinking of organic rich particles. Bacterial phytoplankton near the surface incorporate atmospheric CO2 and other nutrients into their biomass during photosynthesis. At the time of their death these phytoplankton, along with their incorporated carbon, sink to the bottom of the ocean where the carbon remains for thousands of years. The other biologically mediated sequestration of carbon in the ocean occurs through the microbial pump. The microbial pump is responsible for the production of old recalcitrant dissolved organic carbon (DOC) which is >100 years old. Plankton in the ocean are incapable of breaking down this recalcitrant DOC and thus it remains in the oceans for 1000s years without being respired. The two pumps work simultaneously, and the balance between them is believed to vary based on the availability of nutrients. Overall, the oceans act as a sink for atmospheric CO2 but also release some carbon back into the atmosphere. This occurs when bacterioplankton and other organisms in the ocean consume organic matter and respire CO2, and as a result of the solubility equilibrium between the ocean and the atmosphere.


Nitrogen

The nitrogen cycle in the oceans is mediated by microorganisms, many of which are bacteria, performing multiple conversions such as:
nitrogen fixation Nitrogen fixation is a chemical process by which molecular dinitrogen () is converted into ammonia (). It occurs both biologically and abiological nitrogen fixation, abiologically in chemical industry, chemical industries. Biological nitrogen ...
, denitrification, assimilation, and anaerobic ammonia oxidation ( anammox). There are many different nitrogen metabolism strategies employed by bacterioplankton. Starting with molecular nitrogen in the atmosphere (N2), which is fixed by diazotrophs such as trichodesmium into usable forms like ammonia (). This ammonia can then be assimilated into organic matter like amino and nucleic acids, by both photoautrophic and heterotrophic plankton, it can also be nitrified to for energy production by nitrifying bacteria. Finally the use of or as terminal electron acceptors reduces the nitrogen back into N2, which is then released back into the atmosphere thus closing the cycle. Another important process involved in the regeneration of atmospheric N2 is anammox. Anammox, a process in which ammonia is combined with nitrite in order to produce diatomic nitrogen and water, could account for 30–50% of production of N2 in the ocean. An analysis on metagenomes of 83 species of cyanobacteria has suggested the possible dissimilatory nitrate reduction to ammonium (DNRA) activity in certain cyanobacteria. Namely, the study found the presence of the ''NirBD'' gene, which is a marker for DNRA function, in the families Leptolyngbyaceae and Nostocaceae. Moreover, the study indicated that the cyanobacteria that had ''NirBD'' are largely also non- heterocyst nitrogen fixers, suggesting possible alternative strategies of acquiring nitrogen under varying environmental conditions. Nonetheless, the ''NirBD'' gene is also known to play a role in nitrogen assimilation and further studies are required to ascertain the function of ''NirBD'' in cyanobacteria.


Dissolved organic matter

Dissolved organic matter Dissolved organic carbon (DOC) is the fraction of organic carbon Operational definition, operationally defined as that which can pass through a filter with a pore size typically between 0.22 and 0.7 micrometre, micrometers. The fraction remain ...
(DOM) is available in many forms in the ocean, and is responsible for supporting the growth of bacteria and microorganisms in the ocean. The two main sources of this dissolved organic matter are; decomposition of higher trophic level organisms like plants and fish, and secondly DOM in runoffs that pass through soil with high levels of organic material. It is important to note that the age and quality of the DOM is important for its usability by microbes. The majority of the DOM in the oceans is refractory or semi-labile and is not available for biodegradation. As mentioned above the microbial pump is responsible for the production of refractory DOM which is unavailable for biodegradation and remains dissolved in the oceans for thousands of years. The turnover of labile DOM organic material is quite high due to scarcity, this is important for the support of multiple trophic levels in the microbial community. The uptake and respiration of DOM by heterotrophs closes the cycle by producing CO2.


Sulfur

Bacterioplankton, such as members of '' Roseobacter'', SAR11, and '' Gammaproteobacteria'', are known to contribute significantly towards the sulfur cycle, primarily through the metabolism of dimethylsulfoniopropionate (DMSP). DMSP can be catabolized either via means of cleavage to dimethylsulfide (DMS) or
demethylation Demethylation is the chemical process resulting in the removal of a methyl group (CH3) from a molecule. A common way of demethylation is the replacement of a methyl group by a hydrogen atom, resulting in a net loss of one carbon and two hydrogen at ...
by bacterioplankton, in which both have contrasting effects on the
sulfur cycle The sulfur cycle is a biogeochemical cycle in which the sulfur moves between rocks, waterways and living systems. It is important in geology as it affects many minerals and in life because sulfur is an essential element (CHNOPS), being a consti ...
. The formation of DMS contributes to the sulfur flux into the atmosphere and according to the CLAW hypothesis, plays a role in regulating global climate. Increased production of sulfate aerosols from DMS oxidation are capable of promoting cooling on a global scale, via the promotion of cloud formation. In contrast, the demethylation pathway from DMSP to
methanethiol Methanethiol (also known as methyl mercaptan) is an organosulfur compound with the chemical formula . It is a colorless gas with a distinctive putrid smell. In small amounts, it is pervasive in nature and found in certain foods, such as some n ...
results in the integration of carbon and sulfur into the organism itself as opposed to releasing the elements back to the environment. Bacterioplankton DMSP degradation is thought to be prevalent in marine surface waters, although the spatial distribution of the two aforementioned routes of degradation exhibit high variation. Similar to DNRA, the same study indicated the presence of a ''dsyB''-like gene in certain cyanobacteria genomes, suggesting DMSP producing ability. However, there has yet to be empirical confirmation of DMSP synthesis in cyanobacteria.


Silica

Diatom A diatom (Neo-Latin ''diatoma'') is any member of a large group comprising several Genus, genera of algae, specifically microalgae, found in the oceans, waterways and soils of the world. Living diatoms make up a significant portion of Earth's B ...
s are a major group of phytoplankton in which most have a requirement for silicon as biogenic silica to form their cell wall (known as frustule). Upon predation or death, particulate silica is released from diatoms but they need to be dissolved for recycling and reuptake by diatoms, otherwise silica will be exported out and deposited into sediment. Hence, the productivity of diatoms will be limited by silicon if dissolution rates are slow. However, it is known that bacterioplankton (i.e. members of '' Cytophaga-
Flavobacterium ''Flavobacterium'' is a genus of Gram-negative, nonmotile and motile, rod-shaped bacteria that consists of 130 recognized species. Flavobacteria are found in soil and fresh water in a variety of environments. Several species are known to cause ...
- Bacteroides'', '' Alphaproteobacteria'', and ''Gammaproteobacteria'') significantly promote the dissolution of particulate silica, thus maintaining the significant biogenic silica production in the ocean photic zone. It is also suggested that this process helps regulate diatom productivity and its corresponding biogeochemical effects.


Trophic interactions

Variations in bacterioplankton abundance are usually a result of temperature, zooplankton grazing, and availability of substrate. Bacterial abundance and productivity are consistently related to algal abundance and productivity as well as organic carbon. Additionally, phosphorus directly influences both algal and bacterial abundance and in turn, algae and bacteria directly influence each other's abundance In extremely oligotrophic environments, both bacterial and algal growth is limited by phosphorus, but because bacteria are better competitors they obtain a larger portion of the inorganic substrate and increase in abundance more rapidly than algae. In marine
pelagic The pelagic zone consists of the water column of the open ocean and can be further divided into regions by depth. The word ''pelagic'' is derived . The pelagic zone can be thought of as an imaginary cylinder or water column between the sur ...
environments, heterotrophic nano-flagellates are the most probable consumers of bacterial cell production. Cultured
flagellate A flagellate is a cell or organism with one or more whip-like appendages called flagella. The word ''flagellate'' also describes a particular construction (or level of organization) characteristic of many prokaryotes and eukaryotes and the ...
s in laboratory experiments demonstrate that they are adapted to predation on bacteria-sized particles and occur in concentrations to control bacterial biomass. Tight fluctuations in numbers of bacteria and flagellates have been found in a eutrophic estuary, particularly in the summer. The amplitude of these fluctuations increases in response to artificial eutrophication with inorganic nutrients and decreases in response to predation. Losses of bacterioplankton by grazing is indirectly related to carbon balances and directly related to prokaryotic inhibitors. A surplus of substrate would cause increased flagellate biomass, increased grazing on bacterioplankton and therefore decreased bacterial biomass overall. Predation of ciliates is analogous to predation by flagellates on bacteria as well. With using prokaryotic inhibitors seasonally, there is a positive relationship between bacterial abundance and heterotrophic nanoplankton grazing rates and only 40-45 % of bacterioplankton production was observed to be consumed by phagotrophic Protozoa. Additionally, eukaryotic inhibitory experiments show that protozoan grazing has a positive effect on bacterioplankton production suggesting that nitrogen regeneration by Protozoa could be highly important for bacterial growth. Eukaryotic inhibitors did not prove to be useful to determine protozoan grazing rates on bacterioplankton, however they may help understand control mechanisms in the microbial food web.


Ecological significance

Bacterioplankton such as cyanobacteria are able to have toxic blooms in eutrophic lakes which can lead to the death of many organisms such as fish, birds, cattle, pets and humans. A few examples of these harmful blooms is the ''Microcystis'' bloom in the year 2000 in Swan River estuary, Australia, and the Oostvaarderplassen in the Netherlands in 2003. The detrimental effects of these blooms can range from heart malformation in fish to constraining copepod reproduction. High temperatures caused by seasonality increases stratification and preventing vertical turbulent mixing which increases competition for light that favours buoyant cyanobacteria. Higher temperatures also reduce the viscosity of water which allows faster movement which also favors buoyant species of cyanobacteria. These species are also very competitive with the ability to create a surface cover preventing light to reach deeper species of plankton. Climate studies are also indicating that with increasing heat waves the likelihood of detrimental cyanobacterial blooms will become more of a threat to eutrophic freshwater systems. Other implications of the increasing average air temperature due to climate change is that there might be an expansion of the cyanobacterial bloom season, extending from earlier in the spring to later in the fall. Estimates of bacterioplankton abundance and density can be derived with a variety of methods including direct counts, flow cytometry, and conclusions drawn from metabolic measures. Further, as discussed in the biogeochemical cycling section, plankton are responsible for the recycling and movement of essential nutrients (i.e. nitrogen/carbon/DOM) which are essential building blocks for many of the organisms co-existing with bacterioplankton in these ecosystems. These recycled nutrients can be reused by primary producers, thus increasing the efficiency of the biological food web and minimizing energy waste.


See also

*
Bacterioplankton counting methods Bacterioplankton counting is the estimation of the abundance of bacterioplankton in a specific body of water, which is useful information to marine microbiologists. Various counting methodologies have been developed over the years to determine the ...
*
Cyanobacteria Cyanobacteria ( ) are a group of autotrophic gram-negative bacteria that can obtain biological energy via oxygenic photosynthesis. The name "cyanobacteria" () refers to their bluish green (cyan) color, which forms the basis of cyanobacteri ...
*'' Pelagibacter'' *'' Polynucleobacter'' *'' Limnohabitans'' *'' Roseobacter'' * Phytoplankton *
Plankton Plankton are the diverse collection of organisms that drift in Hydrosphere, water (or atmosphere, air) but are unable to actively propel themselves against ocean current, currents (or wind). The individual organisms constituting plankton are ca ...
* Zooplankton * Marine bacteria * Marine bacteriophage


References


Further reading

*


External links


Typical Marine bacterioplankton

Marine Bacterioplankton Database
{{plankton Biological oceanography Planktology Aquatic ecology Taxa named by Christian Gottfried Ehrenberg