HOME

TheInfoList



OR:

The axial current, also denoted the ''pseudo-vector'' or ''chiral'' current, is the
conserved current In physics a conserved current is a current, j^\mu, that satisfies the continuity equation \partial_\mu j^\mu=0. The continuity equation represents a conservation law, hence the name. Indeed, integrating the continuity equation over a volume V, la ...
associated to the
chiral symmetry A chiral phenomenon is one that is not identical to its mirror image (see the article on mathematical chirality). The spin of a particle may be used to define a handedness, or helicity, for that particle, which, in the case of a massless particle ...
or
axial symmetry Axial symmetry is symmetry around an axis; an object is axially symmetric if its appearance is unchanged if rotated around an axis.
of a system.


Origin

According to
Noether's theorem Noether's theorem or Noether's first theorem states that every differentiable symmetry of the action of a physical system with conservative forces has a corresponding conservation law. The theorem was proven by mathematician Emmy Noether ...
, each symmetry of a system is associated a conserved quantity. For example, the
rotational invariance In mathematics, a function defined on an inner product space is said to have rotational invariance if its value does not change when arbitrary rotations are applied to its argument. Mathematics Functions For example, the function :f(x,y) = ...
of a system implies the conservation of its
angular momentum In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed sy ...
, or spacetime invariance implies the conservation of energy–momentum. In
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles a ...
,
internal symmetries In physics, a symmetry of a physical system is a physical or mathematical feature of the system (observed or intrinsic) that is preserved or remains unchanged under some transformation. A family of particular transformations may be ''continu ...
also result in conserved quantities. For example, the
U(1) In mathematics, the circle group, denoted by \mathbb T or \mathbb S^1, is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers. \mathbb T = \ ...
gauge transformation In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations (Lie groups ...
of QED implies the conservation of the
electric charge Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons respecti ...
. Likewise, if a theory possesses an internal chiral or axial symmetry, there will be a conserved quantity, which is called the ''axial charge''. Further, just as the motion of an electrically charged particle produces an
electric current An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. The movin ...
, a moving axial charge constitutes an axial current.


Definition

The axial current resulting from the motion of an axially charged moving particle is formally defined as j_5^\mu = \overline\psi\gamma^5\gamma^\mu\psi, where \psi is the particle field represented by
Dirac spinor In quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos. It appears in the plane-wave solution to the Dirac equation, and is a certain comb ...
(since the particle is typically a spin-1/2
fermion In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks and ...
) and \gamma^5 and \gamma^\mu are the Dirac
gamma matrices In mathematical physics, the gamma matrices, \left\ , also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra Cl1,3(\m ...
. For comparison, the electromagnetic current produced by an electrically charged moving particle is j^\mu = \overline\psi\gamma^\mu\psi.


Meaning

As explained above, the axial current is simply the equivalent of the electromagnetic current for the axial symmetry instead of the U(1) symmetry. Another perspective is given by recalling that the
chiral symmetry A chiral phenomenon is one that is not identical to its mirror image (see the article on mathematical chirality). The spin of a particle may be used to define a handedness, or helicity, for that particle, which, in the case of a massless particle ...
is the
invariance Invariant and invariance may refer to: Computer science * Invariant (computer science), an expression whose value doesn't change during program execution ** Loop invariant, a property of a program loop that is true before (and after) each iterat ...
of the theory under the field rotation \psi_\rightarrow e^\psi_  and  \psi_\rightarrow \psi_ (or alternatively \psi_\rightarrow \psi_  and   \psi_\rightarrow e^\psi_), where \psi_ denotes a left-handed field and \psi_ a right-handed one. From this as well as the fact that \psi=\psi_+\psi_ and the definition of j_5^\mu above, one sees that the axial current is the difference between the current due to left-handed fermions and that from right-handed ones, whilst the electromagnetic current is the sum. Chiral symmetry is exhibited by vector
gauge theories In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations (Lie groups ...
with massless fermions. Since there is no known massless fermion in nature, chiral symmetry is at best an approximate symmetry in fundamental theories, and the axial current is not conserved. (Note: this explicit breaking of the chiral symmetry by non-zero masses is not to be confused with the spontaneous
chiral symmetry breaking In particle physics, chiral symmetry breaking is the spontaneous symmetry breaking of a chiral symmetry – usually by a gauge theory such as quantum chromodynamics, the quantum field theory of the strong interaction. Yoichiro Nambu was award ...
that plays a dominant role in hadronic physics.) An important consequence of such non-conservation is the neutral
pion In particle physics, a pion (or a pi meson, denoted with the Greek letter pi: ) is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more gen ...
decay and the
chiral anomaly In theoretical physics, a chiral anomaly is the anomalous nonconservation of a chiral current. In everyday terms, it is equivalent to a sealed box that contained equal numbers of left and right-handed bolts, but when opened was found to have mor ...
, which is directly related to the pion decay width.


Applications

The axial current is an important part of the formalism describing high-energy scattering reactions. In such reaction, two particles scatter off each other by exchanging a force
boson In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0,1,2 ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have odd half-integer s ...
, e.g., a
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are Massless particle, massless ...
for electromagnetic scattering (see the figure). The cross-section for such reaction is proportional to the square of the
scattering amplitude In quantum physics, the scattering amplitude is the probability amplitude of the outgoing spherical wave relative to the incoming plane wave in a stationary-state scattering process.propagator In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. ...
time the two currents associated with the motions two colliding particles. Therefore, currents (axial or electromagnetic) are one of the two essential ingredients needed to compute high-energy scattering, the other being the boson
propagator In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. ...
. In electron–nucleon
scattering Scattering is a term used in physics to describe a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including ...
(or more generally, charged
lepton In particle physics, a lepton is an elementary particle of half-integer spin (spin (physics), spin ) that does not undergo strong interactions. Two main classes of leptons exist: electric charge, charged leptons (also known as the electron-li ...
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the ele ...
/
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom * Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucl ...
scattering) the axial current yields the spin-dependent part of the cross-section.A. Deur, S. J. Brodsky, G. F. de Teramond (2019) “The Spin Structure of the Nucleon”
Rept. Prog. Phys. 82 076201
(The spin-average part of the cross-section comes from the electromagnetic current.) In
neutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
–nucleon scattering, neutrinos couple only via the axial current, thus accessing different nucleon structure information than with charged leptons. Neutral
pion In particle physics, a pion (or a pi meson, denoted with the Greek letter pi: ) is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more gen ...
s also couple only via the axial current because pions are
pseudoscalar In linear algebra, a pseudoscalar is a quantity that behaves like a scalar, except that it changes sign under a parity inversion while a true scalar does not. Any scalar product between a pseudovector and an ordinary vector is a pseudoscalar. T ...
particles and, to produce amplitudes (scalar quantities), a pion must couple to another pseudoscalar object like the axial current. (Charged pions can also couple via the electromagnetic current.)


See also

*
Chiral anomaly In theoretical physics, a chiral anomaly is the anomalous nonconservation of a chiral current. In everyday terms, it is equivalent to a sealed box that contained equal numbers of left and right-handed bolts, but when opened was found to have mor ...
*
QCD In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type ...
*
Chiral symmetry breaking In particle physics, chiral symmetry breaking is the spontaneous symmetry breaking of a chiral symmetry – usually by a gauge theory such as quantum chromodynamics, the quantum field theory of the strong interaction. Yoichiro Nambu was award ...
*
Chiral perturbation theory Chiral perturbation theory (ChPT) is an effective field theory constructed with a Lagrangian consistent with the (approximate) chiral symmetry of quantum chromodynamics (QCD), as well as the other symmetries of parity and charge conjugation.
*
Chiral magnetic effect Chiral magnetic effect (CME) is the generation of electric current along an external magnetic field induced by chirality imbalance. Fermions are said to be chiral if they keep a definite projection of spin quantum number on momentum. The CME is a m ...
*
Parity (physics) In physics, a parity transformation (also called parity inversion) is the flip in the sign of ''one'' spatial coordinate. In three dimensions, it can also refer to the simultaneous flip in the sign of all three spatial coordinates (a point refle ...


References

{{Reflist Theoretical physics Physical quantities Quantum field theory Particle physics Nuclear physics Quantum chromodynamics Standard Model Conservation equations Conservation laws Symmetry Four-vectors