Avraham Trahtman
   HOME

TheInfoList



OR:

Avraham Naumovich Trahtman (Trakhtman) (; 10 February 1944 – 17 July 2024) was a Soviet-born Israeli mathematician and academic at
Bar-Ilan University Bar-Ilan University (BIU, , ''Universitat Bar-Ilan'') is a public research university in the Tel Aviv District city of Ramat Gan, Israel. Established in 1955, Bar Ilan is Israel's second-largest academic university institution. It has 20,000 ...
(
Israel Israel, officially the State of Israel, is a country in West Asia. It Borders of Israel, shares borders with Lebanon to the north, Syria to the north-east, Jordan to the east, Egypt to the south-west, and the Mediterranean Sea to the west. Isr ...
). In 2007, Trahtman solved a problem in
combinatorics Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many ...
that had been open for 37 years, the
Road Coloring Conjecture A road is a thoroughfare used primarily for movement of traffic. Roads differ from streets, whose primary use is local access. They also differ from stroads, which combine the features of streets and roads. Most modern roads are paved. The wo ...
posed in 1970. Trahtman died in
Jerusalem Jerusalem is a city in the Southern Levant, on a plateau in the Judaean Mountains between the Mediterranean Sea, Mediterranean and the Dead Sea. It is one of the List of oldest continuously inhabited cities, oldest cities in the world, and ...
on 17 July 2024, at the age of 80.


Road coloring problem posed and solved

Trahtman's solution to the road coloring problem was accepted in 2007 and published in 2009 by the ''
Israel Journal of Mathematics '' Israel Journal of Mathematics'' is a peer-reviewed mathematics journal published by the Hebrew University of Jerusalem ( Magnes Press). History Founded in 1963, as a continuation of the ''Bulletin of the Research Council of Israel'' (Section ...
''. The problem arose in the subfield of
symbolic dynamics In mathematics, symbolic dynamics is the study of dynamical systems defined on a discrete space consisting of infinite sequences of abstract symbols. The evolution of the dynamical system is defined as a simple shift of the sequence. Because of t ...
, an abstract part of the field of
dynamical systems In mathematics, a dynamical system is a system in which a Function (mathematics), function describes the time dependence of a Point (geometry), point in an ambient space, such as in a parametric curve. Examples include the mathematical models ...
. The road coloring problem was raised by R. L. Adler and L. W. Goodwyn from the United States, and the Israeli mathematician B. Weiss. The proof used results from earlier work.


Černý conjecture

The problem of estimating the length of synchronizing word has a long history and was posed independently by several authors, but it is commonly known as the
Černý conjecture In computer science, more precisely, in the theory of deterministic finite automata (DFA), a synchronizing word or reset sequence is a word in the input alphabet of the DFA that sends any state of the DFA to one and the same state.Avraham Trakhtma ...
. In 1964 Jan Černý conjectured that (n-1)^2 is the upper bound for the length of the shortest synchronizing word for any n-state complete DFA (a DFA with complete state transition graph). (in Slovak). English translation
A Note on Homogeneous Experiments with Finite Automata
J. Autom. Lang. Comb. 24(2019), 123-132
If this is true, it would be tight: in his 1964 paper, Černý exhibited a class of automata (indexed by the number n of states) for which the shortest reset words have this length. In 2011 Trahtman published a proof of upper bound n (7n^2+6n-16)/48, but then he found an error in it. The conjecture holds in many partial cases, see for instance, Kari and Trahtman.


Other work

The finite basis problem for
semigroups In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively (just notation, not necessarily the ...
of order less than six in the theory of semigroups was posed by
Alfred Tarski Alfred Tarski (; ; born Alfred Teitelbaum;School of Mathematics and Statistics, University of St Andrews ''School of Mathematics and Statistics, University of St Andrews''. January 14, 1901 – October 26, 1983) was a Polish-American logician ...
in 1966, and repeated by
Anatoly Maltsev Anatoly Ivanovich Maltsev (also: Malcev, Mal'cev; Russian: Анато́лий Ива́нович Ма́льцев; 27 November N.S./14 November O.S. 1909, Moscow Governorate – 7 June 1967, Novosibirsk) was born in Misheronsky, near Moscow, and ...
and L. N. Shevrin. In 1983, Trahtman solved this problem by proving that all semigroups of order less than six are finitely based. In the theory of
varieties Variety may refer to: Arts and entertainment Entertainment formats * Variety (radio) * Variety show, in theater and television Films * ''Variety'' (1925 film), a German silent film directed by Ewald Andre Dupont * ''Variety'' (1935 film), ...
of semigroups and
universal algebra Universal algebra (sometimes called general algebra) is the field of mathematics that studies algebraic structures in general, not specific types of algebraic structures. For instance, rather than considering groups or rings as the object of stud ...
s the problem of existence of covering elements in the lattice of varieties was posed by Evans in 1971. The positive solution of the problem was found by Trahtman. He also found a six-element semigroup that generates a variety with a continuum of subvarieties, and varieties of semigroups having no irreducible base of identities. The theory of locally testable
automata An automaton (; : automata or automatons) is a relatively self-operating machine, or control mechanism designed to automatically follow a sequence of operations, or respond to predetermined instructions. Some automata, such as bellstrikers i ...
can be based on the theory of varieties of locally testable semigroups. Trahtman found the precise estimation on the order of local testability of finite automata. There are results in theoretical mechanics and in the promising area of extracting moisture from the air mentioned in "''
New Scientist ''New Scientist'' is a popular science magazine covering all aspects of science and technology. Based in London, it publishes weekly English-language editions in the United Kingdom, the United States and Australia. An editorially separate organ ...
''".F. Pearce. Pyramids of dew. "New Scientist". 16 April 2005. 52-53.


References


External links


Trahtman's page at Bar-Ilan University's WebsiteTrahtman's paper (in PDF format)"63-year-old solves riddle from 1970" on MSNBC"Encyclopedia - Britannica Online Encyclopedia", article: Avraham Trahtman"MacTutor History of Mathematics. Trahtman biography"''A Mathematical Medley Fifty Easy Pieces on Mathematics''
by George G. Szpiro {{DEFAULTSORT:Trahtman, Avraham 1944 births 2024 deaths Academic staff of Bar-Ilan University Israeli Jews 21st-century Israeli mathematicians Russian Jews 20th-century Israeli mathematicians Ural State University alumni