Automorphic Representation
   HOME

TheInfoList



OR:

In harmonic analysis and
number theory Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
, an automorphic form is a well-behaved function from a topological group ''G'' to the complex numbers (or complex
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
) which is invariant under the action of a discrete subgroup \Gamma \subset G of the topological group. Automorphic forms are a generalization of the idea of
periodic function A periodic function, also called a periodic waveform (or simply periodic wave), is a function that repeats its values at regular intervals or periods. The repeatable part of the function or waveform is called a ''cycle''. For example, the t ...
s in
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
to general topological groups. Modular forms are holomorphic automorphic forms defined over the groups SL(2, R) or PSL(2, R) with the discrete subgroup being the modular group, or one of its congruence subgroups; in this sense the theory of automorphic forms is an extension of the theory of modular forms. More generally, one can use the adelic approach as a way of dealing with the whole family of congruence subgroups at once. From this point of view, an automorphic form over the group ''G''(A''F''), for an algebraic group ''G'' and an algebraic number field ''F'', is a complex-valued function on ''G''(A''F'') that is left invariant under ''G''(''F'') and satisfies certain smoothness and growth conditions. Henri Poincaré first discovered automorphic forms as generalizations of trigonometric and elliptic functions. Through the Langlands conjectures, automorphic forms play an important role in modern number theory.


Definition

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the notion of factor of automorphy arises for a group acting on a complex-analytic manifold. Suppose a group G acts on a complex-analytic manifold X. Then, G also acts on the space of holomorphic functions from X to the complex numbers. A function f is termed an ''automorphic form'' if the following holds: : f(g\cdot x) = j_g(x)f(x) where j_g(x) is an everywhere nonzero holomorphic function. Equivalently, an automorphic form is a function whose divisor is invariant under the action of G. The ''factor of automorphy'' for the automorphic form f is the function j. An ''automorphic function'' is an automorphic form for which j is the identity. An automorphic form is a function ''F'' on ''G'' (with values in some fixed finite-dimensional
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
''V'', in the vector-valued case), subject to three kinds of conditions: # to transform under translation by elements \gamma \in \Gamma according to the given factor of automorphy ''j''; # to be an eigenfunction of certain Casimir operators on ''G''; and # to satisfy a "moderate growth" asymptotic condition a height function. It is the first of these that makes ''F'' ''automorphic'', that is, satisfy an interesting functional equation relating ''F''(''g'') with ''F''(''γg'') for \gamma \in \Gamma . In the vector-valued case the specification can involve a finite-dimensional group representation ρ acting on the components to 'twist' them. The Casimir operator condition says that some
Laplacian In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is th ...
s have ''F'' as eigenfunction; this ensures that ''F'' has excellent analytic properties, but whether it is actually a complex-analytic function depends on the particular case. The third condition is to handle the case where ''G''/Γ is not compact but has cusps. The formulation requires the general notion of ''factor of automorphy'' ''j'' for Γ, which is a type of 1- cocycle in the language of group cohomology. The values of ''j'' may be complex numbers, or in fact complex square matrices, corresponding to the possibility of vector-valued automorphic forms. The cocycle condition imposed on the factor of automorphy is something that can be routinely checked, when ''j'' is derived from a Jacobian matrix, by means of the
chain rule In calculus, the chain rule is a formula that expresses the derivative of the Function composition, composition of two differentiable functions and in terms of the derivatives of and . More precisely, if h=f\circ g is the function such that h ...
. A more straightforward but technically advanced definition using class field theory, constructs automorphic forms and their correspondent functions as embeddings of Galois groups to their underlying global field extensions. In this formulation, automorphic forms are certain finite invariants, mapping from the idele class group under the Artin reciprocity law. Herein, the analytical structure of its L-function allows for generalizations with various algebro-geometric properties; and the resultant Langlands program. To oversimplify, automorphic forms in this general perspective, are analytic functionals quantifying the invariance of number fields in a most abstract sense, therefore indicating the 'primitivity' of their fundamental structure. Allowing a powerful mathematical tool for analyzing the invariant constructs of virtually any numerical structure. Examples of automorphic forms in an explicit unabstracted state are difficult to obtain, though some have directly analytical properties: - The Eisenstein series (which is a prototypical modular form) over certain field extensions as Abelian groups. - Specific generalizations of Dirichlet L-functions as class field-theoretic objects. - Generally any harmonic analytic object as a
functor In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) ar ...
over Galois groups which is invariant on its
ideal class group In mathematics, the ideal class group (or class group) of an algebraic number field K is the quotient group J_K/P_K where J_K is the group of fractional ideals of the ring of integers of K, and P_K is its subgroup of principal ideals. The ...
(or idele). As a general principle, automorphic forms can be thought of as analytic functions on abstract structures, which are invariant with respect to a generalized analogue of their prime ideal (or an abstracted irreducible fundamental representation). As mentioned, automorphic functions can be seen as generalizations of modular forms (as therefore elliptic curves), constructed by some zeta function analogue on an automorphic structure. In the simplest sense, automorphic forms are modular forms defined on general
Lie group In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Eucli ...
s; because of their symmetry properties. Therefore, in simpler terms, a general function which analyzes the invariance of a structure with respect to its prime 'morphology'.


History

Before this very general setting was proposed (around 1960), there had already been substantial developments of automorphic forms other than modular forms. The case of Γ a Fuchsian group had already received attention before 1900 (see below). The Hilbert modular forms (also called Hilbert-Blumenthal forms) were proposed not long after that, though a full theory was long in coming. The Siegel modular forms, for which ''G'' is a symplectic group, arose naturally from considering moduli spaces and theta functions. The post-war interest in several complex variables made it natural to pursue the idea of automorphic form in the cases where the forms are indeed complex-analytic. Much work was done, in particular by Ilya Piatetski-Shapiro, in the years around 1960, in creating such a theory. The theory of the Selberg trace formula, as applied by others, showed the considerable depth of the theory. Robert Langlands showed how (in generality, many particular cases being known) the Riemann–Roch theorem could be applied to the calculation of dimensions of automorphic forms; this is a kind of ''post hoc'' check on the validity of the notion. He also produced the general theory of Eisenstein series, which corresponds to what in spectral theory terms would be the 'continuous spectrum' for this problem, leaving the cusp form or discrete part to investigate. From the point of view of number theory, the cusp forms had been recognised, since Srinivasa Ramanujan, as the heart of the matter.


Automorphic representations

The subsequent notion of an "automorphic representation" has proved of great technical value when dealing with ''G'' an algebraic group, treated as an adelic algebraic group. It does not completely include the automorphic form idea introduced above, in that the adelic approach is a way of dealing with the whole family of congruence subgroups at once. Inside an ''L''2 space for a quotient of the adelic form of ''G'', an automorphic representation is a representation that is an infinite tensor product of representations of p-adic groups, with specific enveloping algebra representations for the infinite prime(s). One way to express the shift in emphasis is that the Hecke operators are here in effect put on the same level as the Casimir operators; which is natural from the point of view of
functional analysis Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, Inner product space#Definition, inner product, Norm (mathematics ...
, though not so obviously for the number theory. It is this concept that is basic to the formulation of the Langlands philosophy.


Poincaré on discovery and his work on automorphic functions

One of Poincaré's first discoveries in mathematics, dating to the 1880s, was automorphic forms. He named them Fuchsian functions, after the mathematician Lazarus Fuchs, because Fuchs was known for being a good teacher and had researched on differential equations and the theory of functions. Poincaré actually developed the concept of these functions as part of his doctoral thesis. Under Poincaré's definition, an automorphic function is one which is analytic in its domain and is invariant under a discrete infinite group of linear fractional transformations. Automorphic functions then generalize both trigonometric and elliptic functions. Poincaré explains how he discovered Fuchsian functions:


See also

* Automorphic factor * Automorphic function * Maass cusp form * '' Automorphic Forms on GL(2)'', a book by H. Jacquet and Robert Langlands * Jacobi form


Notes


References

* * Henryk Iwaniec, ''Spectral Methods of Automorphic Forms, Second Edition'', (2002) (Volume 53 in '' Graduate Studies in Mathematics''), American Mathematical Society, Providence, RI * Daniel Bump, "Automorphic Forms and Representations", 1998, Cambridge University Press * Stephen Gelbart (1975), "Automorphic forms on Adele groups", *


External links

* * {{Authority control Lie groups