Auto-ionization
   HOME

TheInfoList



OR:

Autoionization is a process by which an
atom Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
or a
molecule A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
in an
excited state In quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Add ...
spontaneously emits one of the outer-shell
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s, thus going from a state with charge  to a state with charge , for example from an electrically neutral state to a singly
ionized Ionization or ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule i ...
state. Autoionizing states are usually short- lived, and thus can be described as
Fano resonance In physics, a Fano resonance is a type of resonant scattering phenomenon that gives rise to an asymmetric line-shape. Interference between a background and a resonant scattering process produces the asymmetric line-shape. It is named after Italian ...
s rather than normal
bound state A bound state is a composite of two or more fundamental building blocks, such as particles, atoms, or bodies, that behaves as a single object and in which energy is required to split them. In quantum physics, a bound state is a quantum state of a ...
s. They can be observed as variations in the ionization cross sections of atoms and molecules, by
photoionization Photoionization is the physical process in which an ion is formed from the interaction of a photon with an atom or molecule. Cross section Not every interaction between a photon and an atom, or molecule, will result in photoionization. The prob ...
,
electron ionization Electron ionization (EI, formerly known as electron impact ionization and electron bombardment ionization) is an ionization method in which energetic electrons interact with solid or gas phase atoms or molecules to produce ions. EI was one of th ...
and other methods.


Examples

As examples, several Fano resonances in the
extreme ultraviolet Extreme ultraviolet radiation (EUV or XUV) or high-energy ultraviolet radiation is electromagnetic radiation in the part of the electromagnetic spectrum spanning wavelengths shorter than the hydrogen Lyman-alpha line from 121  nm down to ...
photoionization spectrum of
neon Neon is a chemical element; it has symbol Ne and atomic number 10. It is the second noble gas in the periodic table. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with approximately two-thirds the density of ...
are attributed to autoionizing states.Codling, K., Madden, R.P. and Ederer, D.L. (1967), ''Resonances in the Photoionization Continuum of Ne I (20-150 eV)'',
Phys. Rev. ''Physical Review'' is a peer-reviewed scientific journal. The journal was established in 1893 by Edward Nichols. It publishes original research as well as scientific and literature reviews on all aspects of physics. It is published by the Ameri ...
''155'', 26-37 DOI: https://doi.org/10.1103/PhysRev.155.26
Some are due to one-electron excitations, such as a series of three strong similarly shaped peaks at energies of 45.546, 47.121 and 47.692 eV which are interpreted as 1s2 2s1 2p6 ''n''p (1P) states for ''n'' = 3, 4 and 5. These states of neutral neon lie beyond the first ionization energy because it takes more energy to excite a 2s electron than to remove a 2p electron. When autoionization occurs, the ''n''p → 2s de-excitation provides the energy needed to remove one 2p electron and form the Ne+ ground state. Other resonances are attributed to two-electron excitations. The same neon photoionization spectrum considered above contains a fourth strong resonance in the same region at 44.979 eV but with a very different shape, which is interpreted as the 1s2 2s2 2p4 3s 3p (1P) state. For autoionization, the 3s → 2p transition provides the energy to remove the 3p electron. Electron ionization allows the observation of some states which cannot be excited by photons due to selection rules. In neon for example again, the excitation of triplet states is forbidden by the spin selection rule ΔS = 0, but the 1s2 2s2 2p4 3s 3p (3P) has been observed by electron ionization at 42.04 eV. Ion impact by high energy H+, He+ and Ne+ ions has also been used. If a
core electron Core electrons are the electrons in an atom that are not valence electrons and do not participate as directly in chemical bonding. The nucleus and the core electrons of an atom form the atomic core. Core electrons are tightly bound to the nucleus. ...
is missing, a positive ion can autoionize further and lose a second electron in the
Auger effect The Auger effect (; ) or Meitner-Auger effect is a physical phenomenon in which atoms eject electrons. It occurs when an inner-shell vacancy in an atom is filled by an electron, releasing energy that causes the emission of another electron from a ...
. In neon, X-ray excitation can remove a 1s electron, producing an excited Ne+ ion with configuration 1s1 2s2 2p6. In the subsequent Auger process a 2s → 1s transition and simultaneous emission of a second electron from 2p leads to the Ne2+ 1s2 2s1 2p5 ionic state. Molecules, in addition, can have vibrationally autoionizing
Rydberg state The Rydberg states of an atom or molecule are electronically excited states with energies that follow the Rydberg formula as they converge on an ionic state with an ionization energy. Although the Rydberg formula was developed to describe atomic e ...
s, in which the small amount of energy necessary to ionize a Rydberg state is provided by vibrational excitation.


Autodetachment

When the excited state of the atom or molecule consists of a compound state of a neutral particle and a resonantly attached electron, autoionization is referred to as autodetachment. In this case the compound state begins with a net negative charge before the autoionization process, and ends with a neutral charge. The ending state will often be vibrationally or rotationally excited state as a result of excess energy from the resonant attachment process.


References

Atomic physics Molecular physics Quantum chemistry {{quantum-chemistry-stub