
In
geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, the augmented truncated tetrahedron is a polyhedron constructed by attaching a
triangular cupola
In geometry, the triangular cupola is the cupola with hexagon as its base and triangle as its top. If the edges are equal in length, the triangular cupola is the Johnson solid. It can be seen as half a cuboctahedron. The triangular cupola can b ...
onto a
truncated tetrahedron
In geometry, the truncated tetrahedron is an Archimedean solid. It has 4 regular hexagonal faces, 4 equilateral triangle faces, 12 vertices and 18 edges (of two types). It can be constructed by truncation (geometry), truncating all 4 vertices of ...
. It is an example of a
Johnson solid
In geometry, a Johnson solid, sometimes also known as a Johnson–Zalgaller solid, is a convex polyhedron whose faces are regular polygons. They are sometimes defined to exclude the uniform polyhedrons. There are ninety-two Solid geometry, s ...
.
Construction
The augmented truncated tetrahedron is constructed from a
truncated tetrahedron
In geometry, the truncated tetrahedron is an Archimedean solid. It has 4 regular hexagonal faces, 4 equilateral triangle faces, 12 vertices and 18 edges (of two types). It can be constructed by truncation (geometry), truncating all 4 vertices of ...
by attaching a
triangular cupola
In geometry, the triangular cupola is the cupola with hexagon as its base and triangle as its top. If the edges are equal in length, the triangular cupola is the Johnson solid. It can be seen as half a cuboctahedron. The triangular cupola can b ...
. This cupola covers one of the truncated tetrahedron's four hexagonal faces, so that the resulting polyhedron's faces are eight
equilateral triangle
An equilateral triangle is a triangle in which all three sides have the same length, and all three angles are equal. Because of these properties, the equilateral triangle is a regular polygon, occasionally known as the regular triangle. It is the ...
s, three
square
In geometry, a square is a regular polygon, regular quadrilateral. It has four straight sides of equal length and four equal angles. Squares are special cases of rectangles, which have four equal angles, and of rhombuses, which have four equal si ...
s, and three
regular hexagon
In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°.
Regular hexagon
A regular hexagon is de ...
s. Since it has the property of
convexity and has
regular polygon
In Euclidean geometry, a regular polygon is a polygon that is Equiangular polygon, direct equiangular (all angles are equal in measure) and Equilateral polygon, equilateral (all sides have the same length). Regular polygons may be either ''convex ...
al faces, the augmented truncated tetrahedron is a
Johnson solid
In geometry, a Johnson solid, sometimes also known as a Johnson–Zalgaller solid, is a convex polyhedron whose faces are regular polygons. They are sometimes defined to exclude the uniform polyhedrons. There are ninety-two Solid geometry, s ...
, denoted as the sixty-fifth Johnson solid
.
Properties
The surface area of an augmented truncated tetrahedron is:
the sum of the areas of its faces. Its volume can be calculated by slicing it off into both truncated tetrahedron and triangular cupola, and adding their volume:
It has the same
three-dimensional symmetry group as the triangular cupola, the
pyramidal symmetry
In three dimensional geometry, there are four infinite series of point groups in three dimensions (''n''≥1) with ''n''-fold rotational or reflectional symmetry about one axis (by an angle of 360°/''n'') that does not change the object.
They are ...
. Its
dihedral angles can be obtained by adding the angle of a triangular cupola and an augmented truncated tetrahedron in the following:
* its dihedral angle between triangle and hexagon is as in the truncated tetrahedron: 109.47°;
* its dihedral angle between adjacent hexagons is as in the truncated tetrahedron: 70.53°;
* its dihedral angle between triangle and square is as in the triangular cupola's angle: 125.3°
* its dihedral angle between triangle and square, on the edge where the triangular cupola and truncated tetrahedron are attached, is the sum of both triangular cupola's square-hexagon angle and the truncated tetrahedron's triangle-hexagon angle: approximately 164.17°; and
* its dihedral angle between triangle and hexagon, on the edge where triangular cupola and truncated tetrahedron are attached, is the sum of the dihedral angle of a triangular cupola and truncated tetrahedron between that: approximately 141.3°;
References
External links
*
Johnson solids
{{Polyhedron-stub