HOME

TheInfoList



OR:

An atomic battery, nuclear battery, radioisotope battery or radioisotope generator uses energy from the decay of a
radioactive isotope A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ...
to generate
electricity Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
. Like a
nuclear reactor A nuclear reactor is a device used to initiate and control a Nuclear fission, fission nuclear chain reaction. They are used for Nuclear power, commercial electricity, nuclear marine propulsion, marine propulsion, Weapons-grade plutonium, weapons ...
, it generates electricity from nuclear energy, but it differs by not using a
chain reaction A chain reaction is a sequence of reactions where a reactive product or by-product causes additional reactions to take place. In a chain reaction, positive feedback leads to a self-amplifying chain of events. Chain reactions are one way that sys ...
. Although commonly called batteries, atomic batteries are technically not
electrochemical Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference and identifiable chemical change. These reactions involve electrons moving via an electronically conducting phase (typi ...
and cannot be charged or recharged. Although they are very costly, they have extremely long lives and high
energy density In physics, energy density is the quotient between the amount of energy stored in a given system or contained in a given region of space and the volume of the system or region considered. Often only the ''useful'' or extractable energy is measure ...
, so they are typically used as power sources for equipment that must operate unattended for long periods, such as
spacecraft A spacecraft is a vehicle that is designed spaceflight, to fly and operate in outer space. Spacecraft are used for a variety of purposes, including Telecommunications, communications, Earth observation satellite, Earth observation, Weather s ...
, pacemakers,
underwater An underwater environment is a environment of, and immersed in, liquid water in a natural or artificial feature (called a Water, body of water), such as an ocean, sea, lake, pond, reservoir, river, canal, or aquifer. Some characteristics of the ...
systems, and automated scientific stations in remote parts of the world. Nuclear batteries began in 1913, when Henry Moseley first demonstrated a current generated by charged-particle radiation. In the 1950s and 1960s, this field of research got much attention for applications requiring long-life power sources for spacecraft. In 1954,
RCA RCA Corporation was a major American electronics company, which was founded in 1919 as the Radio Corporation of America. It was initially a patent pool, patent trust owned by General Electric (GE), Westinghouse Electric Corporation, Westinghou ...
researched a small atomic battery for small radio receivers and hearing aids. Since RCA's initial research and development in the early 1950s, many types and methods have been designed to extract electrical energy from nuclear sources. The scientific principles are well known, but modern nano-scale technology and new wide-bandgap semiconductors have allowed the making of new devices and interesting material properties not previously available. Nuclear batteries can be classified by their means of
energy conversion Energy transformation, also known as energy conversion, is the process of changing energy from one form to another. In physics, energy is a quantity that provides the capacity to perform Work (physics), work (e.g. lifting an object) or provides ...
into two main groups: ''thermal converters'' and ''non-thermal converters''. The thermal types convert some of the heat generated by the nuclear decay into electricity; an example is the
radioisotope thermoelectric generator A radioisotope thermoelectric generator (RTG, RITEG), or radioisotope power system (RPS), is a type of nuclear battery that uses an array of thermocouples to convert the Decay heat, heat released by the decay of a suitable radioactive material i ...
(RTG), often used in spacecraft. The non-thermal converters, such as betavoltaic cells, extract energy directly from the emitted radiation, before it is degraded into heat; they are easier to miniaturize and do not need a thermal gradient to operate, so they can be used in small machines. Atomic batteries usually have an efficiency of 0.1–5%. High-efficiency betavoltaic devices can reach 6–8% efficiency.


Thermal conversion


Thermionic conversion

A thermionic converter consists of a hot electrode, which thermionically emits electrons over a space-charge barrier to a cooler electrode, producing a useful power output.
Caesium Caesium (IUPAC spelling; also spelled cesium in American English) is a chemical element; it has Symbol (chemistry), symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of , which makes it one of only f ...
vapor is used to optimize the electrode
work function In solid-state physics, the work function (sometimes spelled workfunction) is the minimum thermodynamic work (i.e., energy) needed to remove an electron from a solid to a point in the vacuum immediately outside the solid surface. Here "immediately" ...
s and provide an ion supply (by
surface ionization Thermal ionization, also known as surface ionization or contact ionization, is a physical process whereby the atoms are desorbed from a hot surface, and in the process are ionized. Thermal ionization is used to make simple ion sources, for mass ...
) to neutralize the electron space charge.


Thermoelectric conversion

A
radioisotope thermoelectric generator A radioisotope thermoelectric generator (RTG, RITEG), or radioisotope power system (RPS), is a type of nuclear battery that uses an array of thermocouples to convert the Decay heat, heat released by the decay of a suitable radioactive material i ...
(RTG) uses
thermocouple A thermocouple, also known as a "thermoelectrical thermometer", is an electrical device consisting of two dissimilar electrical conductors forming an electrical junction. A thermocouple produces a temperature-dependent voltage as a result of the ...
s. Each thermocouple is formed from two wires of different metals (or other materials). A temperature gradient along the length of each wire produces a voltage gradient from one end of the wire to the other; but the different materials produce different voltages per degree of temperature difference. By connecting the wires at one end, heating that end but cooling the other end, a usable, but small (millivolts), voltage is generated between the unconnected wire ends. In practice, many are connected in series (or in parallel) to generate a larger voltage (or current) from the same heat source, as heat flows from the hot ends to the cold ends. Metal thermocouples have low thermal-to-electrical efficiency. However, the carrier density and charge can be adjusted in semiconductor materials such as bismuth telluride and silicon germanium to achieve much higher conversion efficiencies.


Thermophotovoltaic conversion

Thermophotovoltaic (TPV) cells work by the same principles as a
photovoltaic cell A solar cell, also known as a photovoltaic cell (PV cell), is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect.
, except that they convert
infrared Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
light (rather than
visible light Light, visible light, or visible radiation is electromagnetic radiation that can be perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400–700 nanometres (nm ...
) emitted by a hot surface, into electricity. Thermophotovoltaic cells have an efficiency slightly higher than thermoelectric couples and can be overlaid on thermoelectric couples, potentially doubling efficiency. The
University of Houston The University of Houston (; ) is a Public university, public research university in Houston, Texas, United States. It was established in 1927 as Houston Junior College, a coeducational institution and one of multiple junior colleges formed in ...
TPV Radioisotope Power Conversion Technology development effort is aiming at combining thermophotovoltaic cells concurrently with
thermocouple A thermocouple, also known as a "thermoelectrical thermometer", is an electrical device consisting of two dissimilar electrical conductors forming an electrical junction. A thermocouple produces a temperature-dependent voltage as a result of the ...
s to provide a 3- to 4-fold improvement in system efficiency over current thermoelectric radioisotope generators.


Stirling generators

A Stirling radioisotope generator is a
Stirling engine A Stirling engine is a heat engine that is operated by the cyclic expansion and contraction of air or other gas (the ''working fluid'') by exposing it to different temperatures, resulting in a net conversion of heat energy to mechanical Work (ph ...
driven by the temperature difference produced by a radioisotope. A more efficient version, the advanced Stirling radioisotope generator, was under development by
NASA The National Aeronautics and Space Administration (NASA ) is an independent agencies of the United States government, independent agency of the federal government of the United States, US federal government responsible for the United States ...
, but was cancelled in 2013 due to large-scale cost overruns.


Non-thermal conversion

Non-thermal converters extract energy from emitted radiation before it is degraded into heat. Unlike thermoelectric and thermionic converters their output does not depend on the temperature difference. Non-thermal generators can be classified by the type of particle used and by the mechanism by which their energy is converted.


Electrostatic conversion

Energy can be extracted from emitted
charged particle In physics, a charged particle is a particle with an electric charge. For example, some elementary particles, like the electron or quarks are charged. Some composite particles like protons are charged particles. An ion, such as a molecule or atom ...
s when their charge builds up in a conductor, thus creating an
electrostatic potential Electric potential (also called the ''electric field potential'', potential drop, the electrostatic potential) is defined as electric potential energy per unit of electric charge. More precisely, electric potential is the amount of work needed ...
. Without a dissipation mode the
voltage Voltage, also known as (electrical) potential difference, electric pressure, or electric tension, is the difference in electric potential between two points. In a Electrostatics, static electric field, it corresponds to the Work (electrical), ...
can increase up to the energy of the radiated particles, which may range from several kilovolts (for beta radiation) up to megavolts (alpha radiation). The built up
electrostatic energy Electric potential energy is a potential energy (measured in joules) that results from conservative Coulomb forces and is associated with the configuration of a particular set of point charges within a defined system. An ''object'' may be sa ...
can be turned into usable electricity in one of the following ways.


Direct-charging generator

A direct-charging generator consists of a
capacitor In electrical engineering, a capacitor is a device that stores electrical energy by accumulating electric charges on two closely spaced surfaces that are insulated from each other. The capacitor was originally known as the condenser, a term st ...
charged by the current of
charged particle In physics, a charged particle is a particle with an electric charge. For example, some elementary particles, like the electron or quarks are charged. Some composite particles like protons are charged particles. An ion, such as a molecule or atom ...
s from a radioactive layer deposited on one of the electrodes. Spacing can be either vacuum or
dielectric In electromagnetism, a dielectric (or dielectric medium) is an Insulator (electricity), electrical insulator that can be Polarisability, polarised by an applied electric field. When a dielectric material is placed in an electric field, electric ...
. Negatively charged
beta particle A beta particle, also called beta ray or beta radiation (symbol β), is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus, known as beta decay. There are two forms of beta decay, β− decay and � ...
s or positively charged alpha particles,
positron The positron or antielectron is the particle with an electric charge of +1''elementary charge, e'', a Spin (physics), spin of 1/2 (the same as the electron), and the same Electron rest mass, mass as an electron. It is the antiparticle (antimatt ...
s or fission fragments may be utilized. Although this form of nuclear-electric generator dates back to 1913, few applications have been found in the past for the extremely low currents and inconveniently high voltages provided by direct-charging generators. Oscillator/transformer systems are employed to reduce the voltages, then rectifiers are used to transform the AC power back to direct current. English physicist H. G. J. Moseley constructed the first of these. Moseley's apparatus consisted of a glass globe
silver Silver is a chemical element; it has Symbol (chemistry), symbol Ag () and atomic number 47. A soft, whitish-gray, lustrous transition metal, it exhibits the highest electrical conductivity, thermal conductivity, and reflectivity of any metal. ...
ed on the inside with a radium emitter mounted on the tip of a wire at the center. The charged particles from the
radium Radium is a chemical element; it has chemical symbol, symbol Ra and atomic number 88. It is the sixth element in alkaline earth metal, group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, ...
created a flow of electricity as they moved quickly from the radium to the inside surface of the sphere. As late as 1945 the Moseley model guided other efforts to build experimental batteries generating electricity from the emissions of radioactive elements.


Electromechanical conversion

Electromechanical atomic batteries use the buildup of charge between two plates to pull one bendable plate towards the other, until the two plates touch, discharge, equalizing the electrostatic buildup, and spring back. The mechanical motion produced can be used to produce electricity through flexing of a
piezoelectric Piezoelectricity (, ) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied stress (mechanics), mechanical s ...
material or through a linear generator. Milliwatts of power are produced in pulses depending on the charge rate, in some cases multiple times per second (35 Hz).


Radiovoltaic conversion

A ''radiovoltaic'' (RV) device converts the energy of ionizing radiation directly into electricity using a
semiconductor junction A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping levels ...
, similar to the conversion of photons into electricity in a
photovoltaic cell A solar cell, also known as a photovoltaic cell (PV cell), is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect.
. Depending on the type of radiation targeted, these devices are called ''alphavoltaic'' (AV, αV), ''betavoltaic'' (BV, βV) and/or ''gammavoltaic'' (GV, γV). Betavoltaics have traditionally received the most attention since (low-energy) beta emitters cause the least amount of radiative damage, thus allowing a longer operating life and less shielding. Interest in alphavoltaic and (more recently) gammavoltaic devices is driven by their potential higher efficiency.


Alphavoltaic conversion

Alphavoltaic devices use a semiconductor junction to produce electrical energy from energetic
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay but may also be produce ...
s.


Betavoltaic conversion

Betavoltaic devices use a semiconductor junction to produce electrical energy from energetic
beta particle A beta particle, also called beta ray or beta radiation (symbol β), is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus, known as beta decay. There are two forms of beta decay, β− decay and � ...
s (
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s). A commonly used source is the hydrogen isotope
tritium Tritium () or hydrogen-3 (symbol T or H) is a rare and radioactive isotope of hydrogen with a half-life of ~12.33 years. The tritium nucleus (t, sometimes called a ''triton'') contains one proton and two neutrons, whereas the nucleus of the ...
, which is employed in City Labs' NanoTritium batteries. Betavoltaic devices are particularly well-suited to low-power electrical applications where long life of the energy source is needed, such as implantable medical devices or military and space applications. The Chinese startup Betavolt claimed in January 2024 to have a miniature device in the pilot testing stage. It is allegedly generating 100 microwatts of power and a voltage of 3V and has a lifetime of 50 years without any need for charging or maintenance. Betavolt claims it to be the first such miniaturised device ever developed. It gains its energy from the isotope nickel-63, held in a module the size of a very small coin. As it is consumed, the nickel-63 decays into stable, non-radioactive isotopes of copper, which pose no environmental threat. It contains a thin wafer of nickel-63 providing
beta particle A beta particle, also called beta ray or beta radiation (symbol β), is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus, known as beta decay. There are two forms of beta decay, β− decay and � ...
electrons sandwiched between two thin crystallographic diamond semiconductor layers.


Gammavoltaic conversion

Gammavoltaic devices use a semiconductor junction to produce electrical energy from energetic gamma particles (high-energy
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
s). They have only been considered in the 2010s but were proposed as early as 1981. A gammavoltaic effect has been reported in perovskite solar cells. Another patented design involves scattering of the gamma particle until its energy has decreased enough to be absorbed in a conventional photovoltaic cell. Gammavoltaic designs using
diamond Diamond is a Allotropes of carbon, solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Diamond is tasteless, odourless, strong, brittle solid, colourless in pure form, a poor conductor of e ...
and Schottky diodes are also being investigated.


Radiophotovoltaic (optoelectric) conversion

In a ''radiophotovoltaic'' (RPV) device the energy conversion is indirect: the emitted particles are first converted into light using a radioluminescent material (a scintillator or
phosphor A phosphor is a substance that exhibits the phenomenon of luminescence; it emits light when exposed to some type of radiant energy. The term is used both for fluorescent or phosphorescent substances which glow on exposure to ultraviolet or ...
), and the light is then converted into electricity using a
photovoltaic cell A solar cell, also known as a photovoltaic cell (PV cell), is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect.
. Depending on the type of particle targeted, the conversion type can be more precisely specified as ''alphaphotovoltaic'' (APV or α-PV), ''betaphotovoltaic'' (BPV or β-PV) or ''gammaphotovoltaic'' (GPV or γ-PV). Radiophotovoltaic conversion can be combined with radiovoltaic conversion to increase the conversion efficiency.


Pacemakers

Medtronic and Alcatel developed a plutonium-powered pacemaker, the Numec NU-5, powered by a 2.5 Ci slug of plutonium 238, first implanted in a human patient in 1970. The 139 Numec NU-5 nuclear pacemakers implanted in the 1970s are expected to never need replacing, an advantage over non-nuclear pacemakers, which require surgical replacement of their batteries every 5 to 10 years. The plutonium "batteries" are expected to produce enough power to drive the circuit for longer than the 88-year halflife of the plutonium-238. The last of these units was implanted in 1988, as lithium-powered pacemakers, which had an expected lifespan of 10 or more years without the disadvantages of radiation concerns and regulatory hurdles, made these units obsolete.
Betavoltaic batteries are also being considered as long-lasting power sources for lead-free pacemakers.


Radioisotopes used

Atomic batteries use radioisotopes that produce low energy beta particles or sometimes alpha particles of varying energies. Low energy beta particles are needed to prevent the production of high energy penetrating Bremsstrahlung radiation that would require heavy shielding. Radioisotopes such as
tritium Tritium () or hydrogen-3 (symbol T or H) is a rare and radioactive isotope of hydrogen with a half-life of ~12.33 years. The tritium nucleus (t, sometimes called a ''triton'') contains one proton and two neutrons, whereas the nucleus of the ...
,
nickel Nickel is a chemical element; it has symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive, but large pieces are slo ...
-63,
promethium Promethium is a chemical element; it has Symbol (chemistry), symbol Pm and atomic number 61. All of its isotopes are Radioactive decay, radioactive; it is extremely rare, with only about 500–600 grams naturally occurring in the Earth's crust a ...
-147, and
technetium Technetium is a chemical element; it has Symbol (chemistry), symbol Tc and atomic number 43. It is the lightest element whose isotopes are all radioactive. Technetium and promethium are the only radioactive elements whose neighbours in the sense ...
-99 have been tested.
Plutonium Plutonium is a chemical element; it has symbol Pu and atomic number 94. It is a silvery-gray actinide metal that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibits six allotropes and four ...
-238, curium-242, curium-244 and
strontium Strontium is a chemical element; it has symbol Sr and atomic number 38. An alkaline earth metal, it is a soft silver-white yellowish metallic element that is highly chemically reactive. The metal forms a dark oxide layer when it is exposed to ...
-90 have been used. Besides the nuclear properties of the used isotope, there are also the issues of chemical properties and availability. A product deliberately produced via neutron irradiation or in a particle accelerator is more difficult to obtain than a fission product easily extracted from
spent nuclear fuel Spent nuclear fuel, occasionally called used nuclear fuel, is nuclear fuel that has been irradiated in a nuclear reactor (usually at a nuclear power plant). It is no longer useful in sustaining a nuclear reaction in an ordinary thermal reactor and ...
. Plutonium-238 must be deliberately produced via neutron irradiation of Neptunium-237 but it can be easily converted into a stable plutonium oxide ceramic. Strontium-90 is easily extracted from spent nuclear fuel but must be converted into the
perovskite Perovskite (pronunciation: ) is a calcium titanium oxide mineral composed of calcium titanate (chemical formula ). Its name is also applied to the class of compounds which have the same type of crystal structure as , known as the perovskite (stru ...
form strontium titanate to reduce its chemical mobility, cutting power density in half. Caesium-137, another high yield nuclear fission product, is rarely used in atomic batteries because it is difficult to convert into chemically inert substances. Another undesirable property of Cs-137 extracted from spent nuclear fuel is that it is contaminated with other isotopes of Caesium which reduce power density further.


Micro-batteries

In the field of microelectromechanical systems (
MEMS MEMS (micro-electromechanical systems) is the technology of microscopic devices incorporating both electronic and moving parts. MEMS are made up of components between 1 and 100 micrometres in size (i.e., 0.001 to 0.1 mm), and MEMS devices ...
), nuclear engineers at the University of Wisconsin, Madison have explored the possibilities of producing minuscule batteries which exploit radioactive nuclei of substances such as polonium or curium to produce electric energy. As an example of an integrated, self-powered application, the researchers have created an oscillating cantilever beam that is capable of consistent, periodic oscillations over very long time periods without the need for refueling. Ongoing work demonstrate that this cantilever is capable of radio frequency transmission, allowing
MEMS MEMS (micro-electromechanical systems) is the technology of microscopic devices incorporating both electronic and moving parts. MEMS are made up of components between 1 and 100 micrometres in size (i.e., 0.001 to 0.1 mm), and MEMS devices ...
devices to communicate with one another wirelessly. These micro-batteries are very light and deliver enough energy to function as power supply for use in MEMS devices and further for supply for nanodevices. The radiation energy released is transformed into electric energy, which is restricted to the area of the device that contains the processor and the micro-battery that supplies it with energy.


See also

* * * * * *


References


External links


Betavoltaic Historical ReviewTypes of Radioisotopic BatteriesAmericium Battery Concept Proposed for Space Applications
TFOT article
Tiny 'nuclear batteries' unveiled
BBC The British Broadcasting Corporation (BBC) is a British public service broadcaster headquartered at Broadcasting House in London, England. Originally established in 1922 as the British Broadcasting Company, it evolved into its current sta ...
article about the research of Jae Wan Kwon et al. from the
University of Missouri The University of Missouri (Mizzou or MU) is a public university, public Land-grant university, land-grant research university in Columbia, Missouri, United States. It is Missouri's largest university and the flagship of the four-campus Univers ...
. {{DEFAULTSORT:Atomic Battery Battery types Electrical generators Nuclear technology Nuclear power in space