Atom (set Theory)
   HOME

TheInfoList



OR:

In
set theory Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathema ...
, a branch of
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, an urelement or ur-element (from the
German German(s) may refer to: * Germany, the country of the Germans and German things **Germania (Roman era) * Germans, citizens of Germany, people of German ancestry, or native speakers of the German language ** For citizenship in Germany, see also Ge ...
prefix ''ur-'', 'primordial') is an object that is not a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
(has no elements), but that may be an
element Element or elements may refer to: Science * Chemical element, a pure substance of one type of atom * Heating element, a device that generates heat by electrical resistance * Orbital elements, parameters required to identify a specific orbit of o ...
of a set. It is also referred to as an atom or individual. Ur-elements are also not identical with the empty set.


Theory

There are several different but essentially equivalent ways to treat urelements in a
first-order theory In mathematical logic, a theory (also called a formal theory) is a set of sentences in a formal language. In most scenarios a deductive system is first understood from context, giving rise to a formal system that combines the language with deduct ...
. One way is to work in a first-order theory with two sorts, sets and urelements, with ''a'' ∈ ''b'' only defined when ''b'' is a set. In this case, if ''U'' is an urelement, it makes no sense to say X \in U, although U \in X is perfectly legitimate. Another way is to work in a one-sorted theory with a
unary relation In mathematics, a finitary relation over a sequence of sets is a subset of the Cartesian product ; that is, it is a set of ''n''-tuples , each being a sequence of elements ''x'i'' in the corresponding ''X'i''. Typically, the relation descri ...
used to distinguish sets and urelements. As non-empty sets contain members while urelements do not, the unary relation is only needed to distinguish the empty set from urelements. Note that in this case, the
axiom of extensionality The axiom of extensionality, also called the axiom of extent, is an axiom used in many forms of axiomatic set theory, such as Zermelo–Fraenkel set theory. The axiom defines what a Set (mathematics), set is. Informally, the axiom means that the ...
must be formulated to apply only to objects that are not urelements. This situation is analogous to the treatments of theories of sets and classes. Indeed, urelements are in some sense dual to proper classes: urelements cannot have members whereas proper classes cannot be members. Put differently, urelements are minimal objects while proper classes are maximal objects by the membership relation (which, of course, is not an order relation, so this analogy is not to be taken literally).


Urelements in set theory

The
Zermelo set theory Zermelo set theory (sometimes denoted by Z-), as set out in a seminal paper in 1908 by Ernst Zermelo, is the ancestor of modern Zermelo–Fraenkel set theory (ZF) and its extensions, such as von Neumann–Bernays–Gödel set theory (NBG). It be ...
of 1908 included urelements, and hence is a version now called ZFA or ZFCA (i.e. ZFA with
axiom of choice In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
). It was soon realized that in the context of this and closely related
axiomatic set theories Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly ...
, the urelements were not needed because they can easily be modeled in a set theory without urelements. Thus, standard expositions of the canonical
axiomatic set theories Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly ...
ZF and ZFC do not mention urelements (for an exception, see Suppes). Axiomatizations of set theory that do invoke urelements include
Kripke–Platek set theory with urelements The Kripke–Platek set theory with urelements (KPU) is an axiom system for set theory with urelements, based on the traditional (urelement-free) Kripke–Platek set theory. It is considerably weaker than the (relatively) familiar system ZFU. Th ...
and the variant of
Von Neumann–Bernays–Gödel set theory In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of Zermelo–Fraenkel–choice set theory (ZFC). NBG introduces the notion of class, which is a collec ...
described by Mendelson. In
type theory In mathematics and theoretical computer science, a type theory is the formal presentation of a specific type system. Type theory is the academic study of type systems. Some type theories serve as alternatives to set theory as a foundation of ...
, an object of type 0 can be called an urelement; hence the name "atom". Adding urelements to the system
New Foundations In mathematical logic, New Foundations (NF) is a non-well-founded, finitely axiomatizable set theory conceived by Willard Van Orman Quine as a simplification of the theory of types of ''Principia Mathematica''. Definition The well-formed fo ...
(NF) to produce NFU has surprising consequences. In particular, Jensen proved the
consistency In deductive logic, a consistent theory is one that does not lead to a logical contradiction. A theory T is consistent if there is no formula \varphi such that both \varphi and its negation \lnot\varphi are elements of the set of consequences ...
of NFU relative to
Peano arithmetic In mathematical logic, the Peano axioms (, ), also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nea ...
; meanwhile, the consistency of NF relative to anything remains an open problem, pending verification of Holmes's proof of its consistency relative to ZF. Moreover, NFU remains relatively consistent when augmented with an
axiom of infinity In axiomatic set theory and the branches of mathematics and philosophy that use it, the axiom of infinity is one of the axioms of Zermelo–Fraenkel set theory. It guarantees the existence of at least one infinite set, namely a set containing ...
and the
axiom of choice In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
. Meanwhile, the negation of the axiom of choice is, curiously, an NF theorem. Holmes (1998) takes these facts as evidence that NFU is a more successful foundation for mathematics than NF. Holmes further argues that set theory is more natural with than without urelements, since we may take as urelements the objects of any theory or of the physical
universe The universe is all of space and time and their contents. It comprises all of existence, any fundamental interaction, physical process and physical constant, and therefore all forms of matter and energy, and the structures they form, from s ...
.Holmes, Randall, 1998.
Elementary Set Theory with a Universal Set
'. Academia-Bruylant.
In
finitist set theory Finitism is a philosophy of mathematics that accepts the existence only of finite mathematical objects. It is best understood in comparison to the mainstream philosophy of mathematics where infinite mathematical objects (e.g., infinite sets) are a ...
, urelements are mapped to the lowest-level components of the target phenomenon, such as atomic constituents of a physical object or members of an organisation.


Quine atoms

An alternative approach to urelements is to consider them, instead of as a type of object other than sets, as a particular type of set. Quine atoms (named after
Willard Van Orman Quine Willard Van Orman Quine ( ; known to his friends as "Van"; June 25, 1908 – December 25, 2000) was an American philosopher and logician in the analytic tradition, recognized as "one of the most influential philosophers of the twentieth century" ...
) are sets that only contain themselves, that is, sets that satisfy the formula ''x'' = . Quine atoms cannot exist in systems of set theory that include the
axiom of regularity In mathematics, the axiom of regularity (also known as the axiom of foundation) is an axiom of Zermelo–Fraenkel set theory that states that every Empty set, non-empty Set (mathematics), set ''A'' contains an element that is Disjoint sets, disjoin ...
, but they can exist in
non-well-founded set theory Non-well-founded set theories are variants of axiomatic set theory that allow sets to be elements of themselves and otherwise violate the rule of well-foundedness. In non-well-founded set theories, the foundation axiom of ZFC is replaced by axio ...
. ZF set theory with the axiom of regularity removed cannot prove that any non-well-founded sets exist (unless it is inconsistent, in which case it will prove any arbitrary statement), but it is compatible with the existence of Quine atoms.
Aczel's anti-foundation axiom In the foundations of mathematics, Aczel's anti-foundation axiom is an axiom set forth by , as an alternative to the axiom of foundation in Zermelo–Fraenkel set theory. It states that every accessible pointed directed graph corresponds to exac ...
implies that there is a unique Quine atom. Other non-well-founded theories may admit many distinct Quine atoms; at the opposite end of the spectrum lies Boffa's axiom of superuniversality, which implies that the distinct Quine atoms form a
proper class Proper may refer to: Mathematics * Proper map, in topology, a property of continuous function between topological spaces, if inverse images of compact subsets are compact * Proper morphism, in algebraic geometry, an analogue of a proper map f ...
. Quine atoms also appear in Quine's
New Foundations In mathematical logic, New Foundations (NF) is a non-well-founded, finitely axiomatizable set theory conceived by Willard Van Orman Quine as a simplification of the theory of types of ''Principia Mathematica''. Definition The well-formed fo ...
, which allows more than one such set to exist. Quine atoms are the only sets called reflexive sets by
Peter Aczel Peter Henry George Aczel (; 31 October 1941 – 1 August 2023) was a British mathematician, logician and Emeritus joint Professor in the Department of Computer Science and the School of Mathematics at the University of Manchester. He is known f ...
,. although other authors, e.g.
Jon Barwise Kenneth Jon Barwise (; June 29, 1942 – March 5, 2000) was an American mathematician, philosopher and logician who proposed some fundamental revisions to the way that logic is understood and used. Education and career He was born in Indepen ...
and Lawrence Moss, use the latter term to denote the larger class of sets with the property ''x'' ∈ ''x''..


References


External links

* {{Mathematical logic