In
quantum field theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
, asymptotic freedom is a property of some
gauge theories
In physics, a gauge theory is a type of field theory in which the Lagrangian, and hence the dynamics of the system itself, does not change under local transformations according to certain smooth families of operations (Lie groups). Formally, t ...
that causes interactions between particles to become
asymptotically
In analytic geometry, an asymptote () of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the ''x'' or ''y'' coordinates tends to infinity. In projective geometry and related contexts, ...
weaker as the energy scale increases and the corresponding length scale decreases. (Alternatively, and perhaps contrarily, in applying an
S-matrix
In physics, the ''S''-matrix or scattering matrix is a Matrix (mathematics), matrix that relates the initial state and the final state of a physical system undergoing a scattering, scattering process. It is used in quantum mechanics, scattering ...
, asymptotically free refers to free particles states in the distant past or the distant future.)
Asymptotic freedom is a feature of
quantum chromodynamics
In theoretical physics, quantum chromodynamics (QCD) is the study of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of ...
(QCD), the
quantum field theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
of the
strong interaction
In nuclear physics and particle physics, the strong interaction, also called the strong force or strong nuclear force, is one of the four known fundamental interaction, fundamental interactions. It confines Quark, quarks into proton, protons, n ...
between
quark
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nucleus, atomic nuclei ...
s and
gluon
A gluon ( ) is a type of Massless particle, massless elementary particle that mediates the strong interaction between quarks, acting as the exchange particle for the interaction. Gluons are massless vector bosons, thereby having a Spin (physi ...
s, the fundamental constituents of nuclear matter. Quarks interact weakly at high energies, allowing
perturbative calculations. At low energies, the interaction becomes strong, leading to the
confinement of quarks and gluons within composite
hadron
In particle physics, a hadron is a composite subatomic particle made of two or more quarks held together by the strong nuclear force. Pronounced , the name is derived . They are analogous to molecules, which are held together by the electri ...
s.
The asymptotic freedom of QCD was discovered in 1973 by
David Gross
David Jonathan Gross (; born February 19, 1941) is an American theoretical physicist and string theorist. Along with Frank Wilczek and David Politzer, he was awarded the 2004 Nobel Prize in Physics for their discovery of asymptotic freedom. ...
and
Frank Wilczek
Frank Anthony Wilczek ( or ; born May 15, 1951) is an American theoretical physicist, mathematician and Nobel laureate. He is the Herman Feshbach Professor of Physics at the Massachusetts Institute of Technology (MIT), Founding Director ...
,
[
]
and independently by
David Politzer
Hugh David Politzer (; born August 31, 1949) is an American theoretical physicist
Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain, and pred ...
in the same year.
[
]
For this work all three shared the 2004
Nobel Prize in Physics
The Nobel Prize in Physics () is an annual award given by the Royal Swedish Academy of Sciences for those who have made the most outstanding contributions to mankind in the field of physics. It is one of the five Nobel Prizes established by the ...
.
Discovery
Asymptotic freedom in QCD was discovered in 1973 by David Gross and Frank Wilczek,
[ and independently by David Politzer in the same year.][ The same phenomenon had previously been observed (in ]quantum electrodynamics
In particle physics, quantum electrodynamics (QED) is the Theory of relativity, relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quant ...
with a charged vector field, by V.S. Vanyashin and M.V. Terent'ev in 1965; and Yang–Mills theory
Yang–Mills theory is a quantum field theory for nuclear binding devised by Chen Ning Yang and Robert Mills in 1953, as well as a generic term for the class of similar theories. The Yang–Mills theory is a gauge theory based on a special un ...
by Iosif Khriplovich in 1969 and Gerard 't Hooft
Gerardus "Gerard" 't Hooft (; born July 5, 1946) is a Dutch theoretical physicist and professor at Utrecht University, the Netherlands. He shared the 1999 Nobel Prize in Physics with his thesis advisor Martinus J. G. Veltman "for elucidating t ...
in 1972[Gerard 't Hooft, "When was Asymptotic Freedom discovered? or The Rehabilitation of Quantum Field Theory", ''Nucl. Phys. Proc. Suppl.'' 74:413–425, 1999, , .]), but its physical significance was not realized until the work of Gross, Wilczek and Politzer, which was recognized by the 2004 Nobel Prize in Physics.[
Experiments at the Stanford Linear Accelerator showed that inside protons, quarks behaved as if they were free. This was a great surprise, as many believed quarks to be tightly bound by the strong interaction, and so they should rapidly dissipate their motion by strong interaction radiation when they got violently accelerated, much like how electrons emit electromagnetic radiation when accelerated.
The discovery was instrumental in "rehabilitating" quantum field theory.][ Prior to 1973, many theorists suspected that field theory was fundamentally inconsistent because the interactions become infinitely strong at short distances. This phenomenon is usually called a ]Landau pole
In physics, the Landau pole (or the Moscow zero, or the Landau ghost) is the momentum (or energy) scale at which the coupling constant (interaction strength) of a quantum field theory becomes infinite. Such a possibility was pointed out by the ph ...
, and it defines the smallest length scale that a theory can describe. This problem was discovered in field theories of interacting scalars and spinor
In geometry and physics, spinors (pronounced "spinner" IPA ) are elements of a complex numbers, complex vector space that can be associated with Euclidean space. A spinor transforms linearly when the Euclidean space is subjected to a slight (infi ...
s, including quantum electrodynamics (QED), and Lehmann positivity led many to suspect that it is unavoidable.
Asymptotically free theories become weak at short distances, there is no Landau pole, and these quantum field theories are believed to be completely consistent down to any length scale.
Electroweak theory within the Standard Model
The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
is not asymptotically free. So a Landau pole exists in the Standard Model. With the Landau pole a problem arises when Higgs boson
The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the excited state, quantum excitation of the Higgs field,
one of the field (physics), fields in particl ...
is being considered. Quantum triviality can be used to bound or predict parameters such as the Higgs boson mass. This leads to a predictable Higgs mass in asymptotic safety scenarios. In other scenarios, interactions are weak so that any inconsistency arises at distances shorter than the Planck length
In particle physics and physical cosmology, Planck units are a system of units of measurement defined exclusively in terms of four universal physical constants: '' c'', '' G'', '' ħ'', and ''k''B (described further below). Expressing one of ...
.
Screening and antiscreening
The variation in a physical coupling constant under changes of scale can be understood qualitatively as coming from the action of the field on virtual particle
A virtual particle is a theoretical transient particle that exhibits some of the characteristics of an ordinary particle, while having its existence limited by the uncertainty principle, which allows the virtual particles to spontaneously emer ...
s carrying the relevant charge. The Landau pole behavior of QED (related to quantum triviality) is a consequence of ''screening'' by virtual charged particle–antiparticle
In particle physics, every type of particle of "ordinary" matter (as opposed to antimatter) is associated with an antiparticle with the same mass but with opposite physical charges (such as electric charge). For example, the antiparticle of the ...
pairs, such as electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
–positron
The positron or antielectron is the particle with an electric charge of +1''elementary charge, e'', a Spin (physics), spin of 1/2 (the same as the electron), and the same Electron rest mass, mass as an electron. It is the antiparticle (antimatt ...
pairs, in the vacuum. In the vicinity of a charge, the vacuum becomes ''polarized'': virtual particles of opposing charge are attracted to the charge, and virtual particles of like charge are repelled. The net effect is to partially cancel out the field at any finite distance. Getting closer and closer to the central charge, one sees less and less of the effect of the vacuum, and the effective charge increases.
In QCD the same thing happens with virtual quark-antiquark pairs; they tend to screen the color charge
Color charge is a property of quarks and gluons that is related to the particles' strong interactions in the theory of quantum chromodynamics (QCD). Like electric charge, it determines how quarks and gluons interact through the strong force; ho ...
. However, QCD has an additional wrinkle: its force-carrying particles, the gluons, themselves carry color charge, and in a different manner. Each gluon carries both a color charge and an anti-color magnetic moment. The net effect of polarization of virtual gluons in the vacuum is not to screen the field but to ''augment'' it and change its color. This is sometimes called ''antiscreening'' (color paramagnetism). Getting closer to a quark diminishes the antiscreening effect of the surrounding virtual gluons, so the contribution of this effect would be to weaken the effective charge with decreasing distance.
Since the virtual quarks and the virtual gluons contribute opposite effects, which effect wins out depends on the number of different kinds, or flavors
Flavour or flavor is either the sensory perception of taste or smell, or a flavoring in food that produces such perception.
Flavour or flavor may also refer to:
Science
* Flavors (programming language), an early object-oriented extension to L ...
, of quark. For standard QCD with three colors, as long as there are no more than 16 flavors of quark (not counting the antiquarks separately), antiscreening prevails and the theory is asymptotically free. In fact, there are only 6 known quark flavors.
Calculating asymptotic freedom
Asymptotic freedom can be derived by calculating the beta function
In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral
: \Beta(z_1,z_2) = \int_0^1 t^ ...
describing the variation of the theory's coupling constant
In physics, a coupling constant or gauge coupling parameter (or, more simply, a coupling), is a number that determines the strength of the force exerted in an interaction. Originally, the coupling constant related the force acting between tw ...
under the renormalization group
In theoretical physics, the renormalization group (RG) is a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in the underlying p ...
. For sufficiently short distances or large exchanges of momentum
In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
(which probe short-distance behavior, roughly because of the inverse relationship between a quantum's momentum and De Broglie wavelength
Matter waves are a central part of the theory of quantum mechanics, being half of wave–particle duality. At all scales where measurements have been practical, matter exhibits wave-like behavior. For example, a beam of electrons can be diffract ...
), an asymptotically free theory is amenable to perturbation theory
In mathematics and applied mathematics, perturbation theory comprises methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. A critical feature of the technique is a middle ...
calculations using Feynman diagram
In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduced ...
s. Such situations are therefore more theoretically tractable than the long-distance, strong-coupling behavior also often present in such theories, which is thought to produce confinement.
Calculating the beta-function is a matter of evaluating Feynman diagrams contributing to the interaction of a quark emitting or absorbing a gluon. Essentially, the beta-function describes how the coupling constants vary as one scales the system . The calculation can be done using rescaling in position space or momentum space (momentum shell integration). In non-abelian gauge theories such as QCD, the existence of asymptotic freedom depends on the gauge group
A gauge group is a group of gauge symmetries of the Yang–Mills gauge theory of principal connections on a principal bundle. Given a principal bundle P\to X with a structure Lie group G, a gauge group is defined to be a group of its vertical ...
and number of flavors of interacting particles. To lowest nontrivial order, the beta-function in an SU(N) gauge theory with kinds of quark-like particle is
:
where is the theory's equivalent of the fine-structure constant
In physics, the fine-structure constant, also known as the Sommerfeld constant, commonly denoted by (the Alpha, Greek letter ''alpha''), is a Dimensionless physical constant, fundamental physical constant that quantifies the strength of the el ...
, in the units favored by particle physicists. If this function is negative, the theory is asymptotically free. For SU(3), one has
and the requirement that gives
:
Thus for SU(3), the color charge
Color charge is a property of quarks and gluons that is related to the particles' strong interactions in the theory of quantum chromodynamics (QCD). Like electric charge, it determines how quarks and gluons interact through the strong force; ho ...
gauge group of QCD, the theory is asymptotically free if there are 16 or fewer flavors of quarks.
Besides QCD, asymptotic freedom can also be seen in other systems like the nonlinear -model in 2 dimensions, which has a structure similar to the SU(n) invariant Yang–Mills theory in 4 dimensions.
Finally, one can find theories that are asymptotically free and reduce to the full Standard Model of electromagnetic, weak and strong forces at low enough energies.[
]
See also
* Asymptotic safety
*Gluon field strength tensor
In theoretical particle physics, the gluon field strength tensor is a second order tensor field characterizing the gluon interaction between quarks.
The strong interaction is one of the fundamental interactions of nature, and the quantum fiel ...
* Quantum triviality
References
*
{{refend
Quantum field theory
Quantum chromodynamics
Renormalization group
Gauge theories