Astronomical Nutation
   HOME

TheInfoList



OR:

Astronomical nutation is a phenomenon which causes the orientation of the axis of
rotation Rotation or rotational/rotary motion is the circular movement of an object around a central line, known as an ''axis of rotation''. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersect ...
of a spinning
astronomical object An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists within the observable universe. In astronomy, the terms ''object'' and ''body'' are of ...
to vary over time. It is caused by the gravitational forces of other nearby bodies acting upon the spinning object. Although they are caused by the same effect operating over different timescales, astronomers usually make a distinction between ''
precession Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the first Euler angle, whereas the third Euler angle defines the rotation itself. In o ...
'', which is a steady long-term change in the axis of rotation, and ''nutation'', which is the combined effect of similar shorter-term variations. An example of precession and nutation is the variation over time of the orientation of the
axis of rotation Rotation or rotational/rotary motion is the circular movement of an object around a central line, known as an ''axis of rotation''. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersect ...
of the
Earth Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
. This is important because the most commonly used
frame of reference In physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system, whose origin (mathematics), origin, orientation (geometry), orientation, and scale (geometry), scale have been specified in physical space. It ...
for measurement of the positions of astronomical objects is the Earth's
equator The equator is the circle of latitude that divides Earth into the Northern Hemisphere, Northern and Southern Hemisphere, Southern Hemispheres of Earth, hemispheres. It is an imaginary line located at 0 degrees latitude, about in circumferen ...
— the so-called
equatorial coordinate system The equatorial coordinate system is a celestial coordinate system widely used to specify the positions of astronomical object, celestial objects. It may be implemented in spherical coordinate system, spherical or Cartesian coordinate system, rect ...
. The effect of precession and nutation causes this frame of reference itself to change over time, relative to an arbitrary fixed frame. Nutation is one of the corrections which must be applied to obtain the apparent place of an astronomical object. When calculating the position of an object, it is initially expressed relative to the ''mean equinox and equator'' — defined by the orientation of the Earth's axis at a specified date, taking into account the long-term effect of precession, but ''not'' the shorter-term effects of nutation. It is then necessary to apply a further correction to take into account the effect of nutation, after which the position relative to the ''true equinox and equator'' is obtained. Because the dynamic motions of the planets are so well known, their nutations can be calculated to within
arcsecond A minute of arc, arcminute (abbreviated as arcmin), arc minute, or minute arc, denoted by the symbol , is a unit of angular measurement equal to of a degree. Since one degree is of a turn, or complete rotation, one arcminute is of a tu ...
s over periods of many decades. There is another disturbance of the Earth's rotation called
polar motion Polar motion of the Earth is the motion of the Earth's rotation, Earth's rotational axis relative to its Earth's crust, crust. This is measured with respect to a reference frame in which the solid Earth is fixed (a so-called ''Earth-centered, Ea ...
that can be estimated for only a few months into the future because it is influenced by rapidly and unpredictably varying things such as
ocean current An ocean current is a continuous, directed movement of seawater generated by a number of forces acting upon the water, including wind, the Coriolis effect, breaking waves, cabbeling, and temperature and salinity differences. Depth contours, sh ...
s, wind systems, and hypothesised motions in the liquid nickel-iron outer core of the Earth.


Earth's nutation

Precession and nutation are caused principally by the gravitational forces of the
Moon The Moon is Earth's only natural satellite. It Orbit of the Moon, orbits around Earth at Lunar distance, an average distance of (; about 30 times Earth diameter, Earth's diameter). The Moon rotation, rotates, with a rotation period (lunar ...
and
Sun The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
acting upon the non-spherical
figure of the Earth In geodesy, the figure of the Earth is the size and shape used to model planet Earth. The kind of figure depends on application, including the precision needed for the model. A spherical Earth is a well-known historical approximation that is ...
. Precession is the effect of these forces
average In colloquial, ordinary language, an average is a single number or value that best represents a set of data. The type of average taken as most typically representative of a list of numbers is the arithmetic mean the sum of the numbers divided by ...
d over a very long period of time, and a time-varying
moment of inertia The moment of inertia, otherwise known as the mass moment of inertia, angular/rotational mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is defined relatively to a rotational axis. It is the ratio between ...
(If an object is asymmetric about its principal axis of rotation, the moment of inertia with respect to each coordinate direction will change with time, while preserving angular momentum), and has a timescale of about 26,000 years. Nutation occurs because the forces are not constant, and vary as the Earth revolves around the Sun, and the Moon revolves around the Earth. Basically, there are also torques from other planets that cause planetary precession which contributes to about 2% of the total precession. Because periodic variations in the torques from the sun and the moon, the wobbling (nutation) comes into place. You can think of precession as the average and nutation as the instantaneous. The largest contributor to nutation is the inclination of the
orbit of the Moon The Moon orbits Earth in the retrograde and prograde motion, prograde direction and completes one orbital period, revolution relative to the March Equinox, Vernal Equinox and the fixed stars in about 27.3 days (a tropical month and sidereal mont ...
around the Earth, at slightly over 5° to the plane of the
ecliptic The ecliptic or ecliptic plane is the orbital plane of Earth's orbit, Earth around the Sun. It was a central concept in a number of ancient sciences, providing the framework for key measurements in astronomy, astrology and calendar-making. Fr ...
. The orientation of this orbital plane varies over a period of about 18.6 years (this period is referred to as the saros). Because the Earth's equator is itself inclined at an angle of about 23.4° to the ecliptic (the obliquity of the ecliptic, \epsilon), these effects combine to vary the inclination of the Moon's orbit to the equator by between 18.4° and 28.6° over the 18.6 year period. This causes the orientation of the Earth's axis to vary over the same period, with the true position of the
celestial pole The north and south celestial poles are the two points in the sky where Earth's axis of rotation, indefinitely extended, intersects the celestial sphere. The north and south celestial poles appear permanently directly overhead to observers at ...
s describing a small ellipse around their mean position. The maximum
radius In classical geometry, a radius (: radii or radiuses) of a circle or sphere is any of the line segments from its Centre (geometry), center to its perimeter, and in more modern usage, it is also their length. The radius of a regular polygon is th ...
of this ellipse is the ''constant of nutation'', approximately 9.2 arcseconds. Smaller effects also contribute to nutation. These are caused by the monthly motion of the Moon around the Earth and its
orbital eccentricity In astrodynamics, the orbital eccentricity of an astronomical object is a dimensionless parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is a circular orbit, values be ...
, and similar terms caused by the annual motion of the Earth around the Sun.


Effect on position of astronomical objects

Because nutation causes a change to the frame of reference, rather than a change in position of an observed object itself, it applies equally to all objects. Its magnitude at any point in time is usually expressed in terms of ecliptic coordinates, as ''nutation in longitude'' (\Delta\psi) in seconds of arc and ''nutation in obliquity'' (\Delta\epsilon) in seconds of arc. The largest term in nutation is expressed numerically (in arcseconds) as follows: :\begin \Delta\psi &= -17.2\sin\Omega \\ \Delta\epsilon &= 9.2\cos\Omega \end where \Omega is the ecliptic longitude of the ascending node of the Moon's orbit. By way of reference, the sum of the absolute value of all the remaining terms is 1.4 arcseconds for longitude and 0.9 arcseconds for obliquity.
Spherical trigonometry Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the edge (geometry), sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, ge ...
can then be used on any given object to convert these quantities into an adjustment in the object's
right ascension Right ascension (abbreviated RA; symbol ) is the angular distance of a particular point measured eastward along the celestial equator from the Sun at the equinox (celestial coordinates), March equinox to the (hour circle of the) point in questio ...
(\alpha) and
declination In astronomy, declination (abbreviated dec; symbol ''δ'') is one of the two angles that locate a point on the celestial sphere in the equatorial coordinate system, the other being hour angle. The declination angle is measured north (positive) or ...
(\delta) For objects that are not close to a celestial pole, nutation in right ascension (\Delta\alpha) and declination (\Delta\delta) can be calculated approximately as follows: :\begin \Delta\alpha &= (\cos\epsilon + \sin\epsilon\sin\alpha\tan\delta)\Delta\psi - \cos\alpha\tan\delta \Delta\epsilon \\ \Delta\delta &= \cos\alpha\sin\epsilon \Delta\psi + \sin\alpha \Delta\epsilon \end


Free nutation

Earth also has an additional 0.10 to 0.15 seconds of arc nutations with a period 6 and half years called Chandler wobble and its due to free nutation caused by irregular distribution of mass around Earth axis.


History

Nutation was discovered by
James Bradley James Bradley (September 1692 – 13 July 1762) was an English astronomer and priest who served as the third Astronomer Royal from 1742. He is best known for two fundamental discoveries in astronomy, the aberration of light (1725–1728), and ...
from a series of observations of stars conducted between 1727 and 1747. These observations were originally intended to demonstrate conclusively the existence of the annual aberration of light, a phenomenon that Bradley had unexpectedly discovered in 1725-6. However, there were some residual discrepancies in the stars' positions that were not explained by aberration, and Bradley suspected that they were caused by nutation taking place over the 18.6 year period of the revolution of the nodes of the Moon's orbit. This was confirmed by his 20-year series of observations, in which he discovered that the celestial pole moved in a slightly flattened ellipse of 18 by 16 arcseconds about its mean position. Although Bradley's observations proved the existence of nutation and he intuitively understood that it was caused by the action of the Moon on the rotating Earth, it was left to later mathematicians,
Jean le Rond d'Alembert Jean-Baptiste le Rond d'Alembert ( ; ; 16 November 1717 – 29 October 1783) was a French mathematician, mechanician, physicist, philosopher, and music theorist. Until 1759 he was, together with Denis Diderot, a co-editor of the ''Encyclopé ...
and
Leonhard Euler Leonhard Euler ( ; ; ; 15 April 170718 September 1783) was a Swiss polymath who was active as a mathematician, physicist, astronomer, logician, geographer, and engineer. He founded the studies of graph theory and topology and made influential ...
, to develop a more detailed theoretical explanation of the phenomenon.


See also

* Aberration of light *
Polar motion Polar motion of the Earth is the motion of the Earth's rotation, Earth's rotational axis relative to its Earth's crust, crust. This is measured with respect to a reference frame in which the solid Earth is fixed (a so-called ''Earth-centered, Ea ...


References

{{Authority control Astrometry