Astatine is a
chemical element
A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler sub ...
with the
symbol
A symbol is a mark, sign, or word that indicates, signifies, or is understood as representing an idea, object, or relationship. Symbols allow people to go beyond what is known or seen by creating linkages between otherwise very different conc ...
At and
atomic number
The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every ...
85. It is the rarest
naturally occurring element in the
Earth's crust
Earth's crust is Earth's thin outer shell of rock, referring to less than 1% of Earth's radius and volume. It is the top component of the lithosphere, a division of Earth's layers that includes the crust and the upper part of the mantle. The ...
, occurring only as the
decay product
In nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps (d ...
of various heavier elements. All of astatine's
isotope
Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers ( mass number ...
s are short-lived; the most stable is astatine-210, with a
half-life
Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable at ...
of 8.1 hours. A sample of the pure element has never been assembled, because any macroscopic specimen would be immediately vaporized by the heat of its own radioactivity.
The bulk properties of astatine are not known with certainty. Many of them have been estimated from the element's position on the
periodic table
The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of ...
as a heavier analog of
iodine
Iodine is a chemical element with the Symbol (chemistry), symbol I and atomic number 53. The heaviest of the stable halogens, it exists as a semi-lustrous, non-metallic solid at standard conditions that melts to form a deep violet liquid at , ...
, and a member of the
halogens (the group of elements including
fluorine,
chlorine
Chlorine is a chemical element with the symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine is ...
,
bromine
Bromine is a chemical element with the symbol Br and atomic number 35. It is the third-lightest element in group 17 of the periodic table (halogens) and is a volatile red-brown liquid at room temperature that evaporates readily to form a simil ...
, and iodine). However, astatine also falls roughly along the
dividing line between metals and nonmetals, and some metallic behavior has also been observed and predicted for it. Astatine is likely to have a dark or lustrous appearance and may be a
semiconductor
A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. ...
or possibly a
metal
A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typi ...
. Chemically, several
anion
An ion () is an atom or molecule with a net electrical charge.
The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
ic species of astatine are known and most of its compounds resemble those of iodine, but it also sometimes displays metallic characteristics and shows some similarities to
silver
Silver is a chemical element with the Symbol (chemistry), symbol Ag (from the Latin ', derived from the Proto-Indo-European wikt:Reconstruction:Proto-Indo-European/h₂erǵ-, ''h₂erǵ'': "shiny" or "white") and atomic number 47. A soft, whi ...
.
The first synthesis of the element was in 1940 by
Dale R. Corson
Dale Raymond Corson (April 5, 1914 – March 31, 2012) was the eighth president of Cornell University. Born in Pittsburg, Kansas, in 1914, Corson received a B.A. degree from the College of Emporia in 1934, his M.A. degree from the University ...
,
Kenneth Ross MacKenzie, and
Emilio G. Segrè at the
University of California, Berkeley
The University of California, Berkeley (UC Berkeley, Berkeley, Cal, or California) is a public land-grant research university in Berkeley, California. Established in 1868 as the University of California, it is the state's first land-grant u ...
, who named it from the
Ancient Greek
Ancient Greek includes the forms of the Greek language used in ancient Greece and the ancient world from around 1500 BC to 300 BC. It is often roughly divided into the following periods: Mycenaean Greek (), Dark Ages (), the Archaic p ...
() 'unstable'. Four
isotopes of astatine were subsequently found to be naturally occurring, although much less than one gram is present at any given time in the Earth's crust. Neither the most stable isotope astatine-210, nor the medically useful astatine-211, occur naturally; they can only be produced synthetically, usually by bombarding
bismuth
Bismuth is a chemical element with the symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental bismuth occurs ...
-209 with
alpha particle
Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be pro ...
s.
Characteristics
Astatine is an extremely radioactive element; all its isotopes have
half-lives of 8.1 hours or less, decaying into other astatine isotopes,
bismuth
Bismuth is a chemical element with the symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental bismuth occurs ...
,
polonium
Polonium is a chemical element with the symbol Po and atomic number 84. Polonium is a chalcogen. A rare and highly radioactive metal with no stable isotopes, polonium is chemically similar to selenium and tellurium, though its metallic characte ...
, or
radon
Radon is a chemical element with the symbol Rn and atomic number 86. It is a radioactive, colourless, odourless, tasteless noble gas. It occurs naturally in minute quantities as an intermediate step in the normal radioactive decay chains through ...
. Most of its isotopes are very unstable, with half-lives of one second or less. Of the first 101 elements in the periodic table, only
francium
Francium is a chemical element with the symbol Fr and atomic number 87. It is extremely radioactive; its most stable isotope, francium-223 (originally called actinium K after the natural decay chain it appears in), has a half-life of only 22 ...
is less stable, and all the astatine isotopes more stable than francium are in any case synthetic and do not occur in nature.
The bulk properties of astatine are not known with any certainty. Research is limited by its short half-life, which prevents the creation of weighable quantities.
A visible piece of astatine would immediately vaporize itself because of the heat generated by its intense radioactivity.
It remains to be seen if, with sufficient cooling, a macroscopic quantity of astatine could be deposited as a thin film.
Astatine is usually classified as either a
nonmetal
In chemistry, a nonmetal is a chemical element that generally lacks a predominance of metallic properties; they range from colorless gases (like hydrogen) to shiny solids (like carbon, as graphite). The electrons in nonmetals behave differen ...
or a
metalloid;
metal formation has also been predicted.
Physical
Most of the physical properties of astatine have been estimated (by
interpolation
In the mathematical field of numerical analysis, interpolation is a type of estimation, a method of constructing (finding) new data points based on the range of a discrete set of known data points.
In engineering and science, one often has ...
or
extrapolation
In mathematics, extrapolation is a type of estimation, beyond the original observation range, of the value of a variable on the basis of its relationship with another variable. It is similar to interpolation, which produces estimates between kno ...
), using theoretically or empirically derived methods. For example, halogens get darker with increasing atomic weight – fluorine is nearly colorless,
chlorine
Chlorine is a chemical element with the symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine is ...
is yellow green, bromine is red brown, and iodine is dark gray/violet. Astatine is sometimes described as probably being a black solid (assuming it follows this trend), or as having a metallic appearance (if it is a metalloid or a metal).
Astatine sublimes less readily than does iodine, having a lower
vapor pressure
Vapor pressure (or vapour pressure in English-speaking countries other than the US; see spelling differences) or equilibrium vapor pressure is defined as the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phase ...
.
Even so, half of a given quantity of astatine will vaporize in approximately an hour if put on a clean glass surface at
room temperature
Colloquially, "room temperature" is a range of air temperatures that most people prefer for indoor settings. It feels comfortable to a person when they are wearing typical indoor clothing. Human comfort can extend beyond this range depending on ...
. The
absorption spectrum
Absorption spectroscopy refers to spectroscopic techniques that measure the absorption of radiation, as a function of frequency or wavelength, due to its interaction with a sample. The sample absorbs energy, i.e., photons, from the radiating fi ...
of astatine in the
middle ultraviolet region has lines at 224.401 and 216.225 nm, suggestive of
6p to 7s transitions.
The structure of solid astatine is unknown. As an analogue of iodine it may have an
orthorhombic crystalline structure composed of
diatomic
Diatomic molecules () are molecules composed of only two atoms, of the same or different chemical elements. If a diatomic molecule consists of two atoms of the same element, such as hydrogen () or oxygen (), then it is said to be homonuclear. Ot ...
astatine molecules, and be a semiconductor (with a
band gap
In solid-state physics, a band gap, also called an energy gap, is an energy range in a solid where no electronic states can exist. In graphs of the electronic band structure of solids, the band gap generally refers to the energy difference ( ...
of 0.7
eV).
Alternatively, if condensed astatine forms a metallic phase, as has been predicted, it may have a monatomic
face-centered cubic structure; in this structure it may well be a
superconductor, like the similar high-pressure phase of iodine.
Metallic astatine is expected to have a density of 8.91–8.95 g/cm
3.
[
Evidence for (or against) the existence of diatomic astatine (At2) is sparse and inconclusive. Some sources state that it does not exist, or at least has never been observed,] while other sources assert or imply its existence. Despite this controversy, many properties of diatomic astatine have been predicted; for example, its bond length would be , dissociation energy , and heat of vaporization
The enthalpy of vaporization (symbol ), also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy ( enthalpy) that must be added to a liquid substance to transform a quantity of that substance into a gas. ...
(∆Hvap) 54.39 kJ/mol. Many values have been predicted for the melting
Melting, or fusion, is a physical process that results in the phase transition of a substance from a solid to a liquid. This occurs when the internal energy of the solid increases, typically by the application of heat or pressure, which inc ...
and boiling points of astatine, but only for At2.
Chemical
The chemistry of astatine is "clouded by the extremely low concentrations at which astatine experiments have been conducted, and the possibility of reactions with impurities, walls and filters, or radioactivity by-products, and other unwanted nano-scale interactions". Many of its apparent chemical properties have been observed using tracer
Tracer may refer to:
Science
* Flow tracer, any fluid property used to track fluid motion
* Fluorescent tracer, a substance such as 2-NBDG containing a fluorophore that is used for tracking purposes
* Histochemical tracer, a substance used for tr ...
studies on extremely dilute astatine solutions, typically less than 10−10 mol·L−1. Some properties, such as anion formation, align with other halogens. Astatine has some metallic characteristics as well, such as plating
Plating is a surface covering in which a metal is deposited on a conductive surface. Plating has been done for hundreds of years; it is also critical for modern technology. Plating is used to decorate objects, for corrosion inhibition, to improv ...
onto a cathode
A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction i ...
, and coprecipitating with metal sulfides in hydrochloric acid. It forms complexes with EDTA
Ethylenediaminetetraacetic acid (EDTA) is an aminopolycarboxylic acid with the formula H2N(CH2CO2H)2sub>2. This white, water-soluble solid is widely used to bind to iron (Fe2+/Fe3+) and calcium ions (Ca2+), forming water-soluble complexes ev ...
, a metal chelating agent
Chelation is a type of bonding of ions and molecules to metal ions. It involves the formation or presence of two or more separate coordinate bonds between a polydentate (multiple bonded) ligand and a single central metal atom. These ligands are ...
, and is capable of acting as a metal in antibody
An antibody (Ab), also known as an immunoglobulin (Ig), is a large, Y-shaped protein used by the immune system to identify and neutralize foreign objects such as pathogenic bacteria and Viral disease, viruses. The antibody recognizes a unique m ...
radiolabeling
A radioactive tracer, radiotracer, or radioactive label is a chemical compound in which one or more atoms have been replaced by a radionuclide so by virtue of its radioactive decay it can be used to explore the mechanism of chemical reactions by tr ...
; in some respects astatine in the +1 state is akin to silver in the same state. Most of the organic chemistry of astatine is, however, analogous to that of iodine. It has been suggested that astatine can form a stable monatomic cation
A monatomic ion (also called simple ion) is an ion consisting of exactly one atom. If an ion contains more than one atom, even if these are of the same element, it is called a polyatomic ion. For example, calcium carbonate consists of the monatomic ...
in aqueous solution, but electromigration evidence suggests that the cationic At(I) species is protonated hypoastatous acid (H2OAt+), showing analogy to iodine.
Astatine has an electronegativity
Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the ...
of 2.2 on the revised Pauling scale
Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and ...
– lower than that of iodine (2.66) and the same as hydrogen. In hydrogen astatide (HAt), the negative charge is predicted to be on the hydrogen atom, implying that this compound could be referred to as astatine hydride according to certain nomenclatures. That would be consistent with the electronegativity of astatine on the Allred–Rochow scale
Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the ...
(1.9) being less than that of hydrogen (2.2). However, official IUPAC stoichiometric nomenclature is based on an idealized convention of determining the relative electronegativities of the elements by the mere virtue of their position within the periodic table. According to this convention, astatine is handled as though it is more electronegative than hydrogen, irrespective of its true electronegativity. The electron affinity
The electron affinity (''E''ea) of an atom or molecule is defined as the amount of energy released when an electron attaches to a neutral atom or molecule in the gaseous state to form an anion.
::X(g) + e− → X−(g) + energy
Note that this is ...
of astatine, at 233 kJ mol−1, is 21% less than that of iodine. In comparison, the value of Cl (349) is 6.4% higher than F (328); Br (325) is 6.9% less than Cl; and I (295) is 9.2% less than Br. The marked reduction for At was predicted as being due to spin–orbit interaction
In quantum physics, the spin–orbit interaction (also called spin–orbit effect or spin–orbit coupling) is a relativistic interaction of a particle's spin with its motion inside a potential. A key example of this phenomenon is the spin–orb ...
s. The first ionisation energy
Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule ...
of astatine is about 899 kJ mol−1, which continues the trend of decreasing first ionisation energies down the halogen group (fluorine, 1681; chlorine, 1251; bromine, 1140; iodine, 1008).
Compounds
Less reactive than iodine, astatine is the least reactive of the halogens.[ ] Its compounds have been synthesized in nano-scale amounts and studied as intensively as possible before their radioactive disintegration. The reactions involved have been typically tested with dilute solutions of astatine mixed with larger amounts of iodine. Acting as a carrier, the iodine ensures there is sufficient material for laboratory techniques (such as filtration and precipitation
In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravitational pull from clouds. The main forms of precipitation include drizzle, rain, sleet, snow, ice pellets, graupel and hai ...
) to work. Like iodine, astatine has been shown to adopt odd-numbered oxidation states ranging from −1 to +7.
Only a few compounds with metals have been reported, in the form of astatides of sodium, palladium
Palladium is a chemical element with the symbol Pd and atomic number 46. It is a rare and lustrous silvery-white metal discovered in 1803 by the English chemist William Hyde Wollaston. He named it after the asteroid Pallas, which was itself nam ...
, silver, thallium
Thallium is a chemical element with the symbol Tl and atomic number 81. It is a gray post-transition metal that is not found free in nature. When isolated, thallium resembles tin, but discolors when exposed to air. Chemists William Crookes a ...
, and lead. Some characteristic properties of silver and sodium astatide, and the other hypothetical alkali and alkaline earth astatides, have been estimated by extrapolation from other metal halides.
The formation of an astatine compound with hydrogen – usually referred to as hydrogen astatide – was noted by the pioneers of astatine chemistry. As mentioned, there are grounds for instead referring to this compound as astatine hydride. It is easily oxidized
Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a de ...
; acidification by dilute nitric acid
Nitric acid is the inorganic compound with the formula . It is a highly corrosive mineral acid. The compound is colorless, but older samples tend to be yellow cast due to decomposition into oxides of nitrogen. Most commercially available ni ...
gives the At0 or At+ forms, and the subsequent addition of silver(I) may only partially, at best, precipitate astatine as silver(I) astatide (AgAt). Iodine, in contrast, is not oxidized, and precipitates readily as silver(I) iodide.
Astatine is known to bind to boron, carbon, and nitrogen
Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at seve ...
. Various boron cage compounds have been prepared with At–B bonds, these being more stable than At–C bonds. Astatine can replace a hydrogen atom in benzene
Benzene is an organic chemical compound with the molecular formula C6H6. The benzene molecule is composed of six carbon atoms joined in a planar ring with one hydrogen atom attached to each. Because it contains only carbon and hydrogen ato ...
to form astatobenzene C6H5At; this may be oxidized to C6H5AtCl2 by chlorine. By treating this compound with an alkaline
In chemistry, an alkali (; from ar, القلوي, al-qaly, lit=ashes of the saltwort) is a basic, ionic salt of an alkali metal or an alkaline earth metal. An alkali can also be defined as a base that dissolves in water. A solution of a ...
solution of hypochlorite, C6H5AtO2 can be produced. The dipyridine-astatine(I) cation, 5H5N)2">t(C5H5N)2sup>+, forms ionic compound
In chemistry, an ionic compound is a chemical compound composed of ions held together by electrostatic forces termed ionic bonding. The compound is neutral overall, but consists of positively charged ions called cations and negatively charged ...
s with perchlorate
A perchlorate is a chemical compound containing the perchlorate ion, . The majority of perchlorates are commercially produced salts. They are mainly used as oxidizers for pyrotechnic devices and to control static electricity in food packaging. ...
(a non-coordinating anion
Anions that interact weakly with cations are termed non-coordinating anions, although a more accurate term is weakly coordinating anion. Non-coordinating anions are useful in studying the reactivity of electrophilic cations. They are commonly foun ...
) and with nitrate
Nitrate is a polyatomic ion with the chemical formula . Salts containing this ion are called nitrates. Nitrates are common components of fertilizers and explosives. Almost all inorganic nitrates are soluble in water. An example of an insoluble ...
, 5H5N)2">t(C5H5N)2O3. This cation exists as a coordination complex
A coordination complex consists of a central atom or ion, which is usually metallic and is called the ''coordination centre'', and a surrounding array of bound molecules or ions, that are in turn known as ''ligands'' or complexing agents. Many ...
in which two dative covalent bond
In coordination chemistry, a coordinate covalent bond, also known as a dative bond, dipolar bond, or coordinate bond is a kind of two-center, two-electron covalent bond in which the two electrons derive from the same atom. The bonding of metal i ...
s separately link the astatine(I) centre with each of the pyridine
Pyridine is a basic (chemistry), basic heterocyclic compound, heterocyclic organic compound with the chemical formula . It is structurally related to benzene, with one methine group replaced by a nitrogen atom. It is a highly flammable, weakl ...
rings via their nitrogen atoms.
With oxygen, there is evidence of the species AtO− and AtO+ in aqueous solution, formed by the reaction of astatine with an oxidant such as elemental bromine or (in the last case) by sodium persulfate
Sodium persulfate is the inorganic compound with the formula Na2 S2 O8. It is the sodium salt of peroxydisulfuric acid, H2S2O8, an oxidizing agent. It is a white solid that dissolves in water. It is almost non-hygroscopic and has good shelf-lif ...
in a solution of perchloric acid
Perchloric acid is a mineral acid with the formula H Cl O4. Usually found as an aqueous solution, this colorless compound is a stronger acid than sulfuric acid, nitric acid and hydrochloric acid. It is a powerful oxidizer when hot, but aqueous s ...
: the latter species might also be protonated astatous acid, . The species previously thought to be has since been determined to be , a hydrolysis product of AtO+ (another such hydrolysis product being AtOOH). The well characterized anion can be obtained by, for example, the oxidation of astatine with potassium hypochlorite in a solution of potassium hydroxide
Potassium hydroxide is an inorganic compound with the formula K OH, and is commonly called caustic potash.
Along with sodium hydroxide (NaOH), KOH is a prototypical strong base. It has many industrial and niche applications, most of which expl ...
. Preparation of lanthanum
Lanthanum is a chemical element with the symbol La and atomic number 57. It is a soft, ductile, silvery-white metal that tarnishes slowly when exposed to air. It is the eponym of the lanthanide series, a group of 15 similar elements between lantha ...
triastatate La(AtO3)3, following the oxidation of astatine by a hot Na2S2O8 solution, has been reported. Further oxidation of , such as by xenon difluoride
Xenon difluoride is a powerful fluorinating agent with the chemical formula , and one of the most stable xenon compounds. Like most covalent inorganic fluorides it is moisture-sensitive. It decomposes on contact with water vapor, but is otherwi ...
(in a hot alkaline solution) or periodate
Periodate is an anion composed of iodine and oxygen. It is one of a number of oxyanions of iodine and is the highest in the series, with iodine existing in oxidation state +7. Unlike other perhalogenates, such as perchlorate, it can exist in tw ...
(in a neutral or alkaline solution), yields the perastatate ion ; this is only stable in neutral or alkaline solutions. Astatine is also thought to be capable of forming cations in salts with oxyanions such as iodate
An iodate is the polyatomic anion with the formula . It is the most common form of iodine in nature, as it comprises the major iodine-containing ores. Iodate salts are often colorless. They are the salts of iodic acid.
Structure
Iodate is pyra ...
or dichromate; this is based on the observation that, in acidic solutions, monovalent or intermediate positive states of astatine coprecipitate with the insoluble salts of metal cations such as silver(I) iodate or thallium(I) dichromate.
Astatine may form bonds to the other chalcogen
The chalcogens (ore forming) ( ) are the chemical elements in group 16 of the periodic table. This group is also known as the oxygen family. Group 16 consists of the elements oxygen (O), sulfur (S), selenium (Se), tellurium (Te), and the radioa ...
s; these include S7At+ and with sulfur
Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formul ...
, a coordination selenourea compound with selenium
Selenium is a chemical element with the symbol Se and atomic number 34. It is a nonmetal (more rarely considered a metalloid) with properties that are intermediate between the elements above and below in the periodic table, sulfur and telluriu ...
, and an astatine–tellurium
Tellurium is a chemical element with the symbol Te and atomic number 52. It is a brittle, mildly toxic, rare, silver-white metalloid. Tellurium is chemically related to selenium and sulfur, all three of which are chalcogens. It is occasionally fo ...
colloid
A colloid is a mixture in which one substance consisting of microscopically dispersed insoluble particles is suspended throughout another substance. Some definitions specify that the particles must be dispersed in a liquid, while others exten ...
with tellurium.
Astatine is known to react with its lighter homologs iodine, bromine
Bromine is a chemical element with the symbol Br and atomic number 35. It is the third-lightest element in group 17 of the periodic table (halogens) and is a volatile red-brown liquid at room temperature that evaporates readily to form a simil ...
, and chlorine
Chlorine is a chemical element with the symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine is ...
in the vapor state; these reactions produce diatomic interhalogen compounds with formulas AtI, AtBr, and AtCl. The first two compounds may also be produced in water – astatine reacts with iodine/iodide
An iodide ion is the ion I−. Compounds with iodine in formal oxidation state −1 are called iodides. In everyday life, iodide is most commonly encountered as a component of iodized salt, which many governments mandate. Worldwide, iodine def ...
solution to form AtI, whereas AtBr requires (aside from astatine) an iodine/ iodine monobromide/bromide
A bromide ion is the negatively charged form (Br−) of the element bromine, a member of the halogens group on the periodic table. Most bromides are colorless. Bromides have many practical roles, being found in anticonvulsants, flame-retardan ...
solution. The excess of iodides or bromides may lead to and ions, or in a chloride solution, they may produce species like or via equilibrium reactions with the chlorides. Oxidation of the element with dichromate (in nitric acid solution) showed that adding chloride turned the astatine into a molecule likely to be either AtCl or AtOCl. Similarly, or may be produced. The polyhalides PdAtI2, CsAtI2, TlAtI2, and PbAtI are known or presumed to have been precipitated. In a plasma ion source mass spectrometer
Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a '' mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is u ...
, the ions tIsup>+, tBrsup>+, and tClsup>+ have been formed by introducing lighter halogen vapors into a helium
Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
-filled cell containing astatine, supporting the existence of stable neutral molecules in the plasma ion state. No astatine fluorides have been discovered yet. Their absence has been speculatively attributed to the extreme reactivity of such compounds, including the reaction of an initially formed fluoride with the walls of the glass container to form a non-volatile product. Thus, although the synthesis of an astatine fluoride is thought to be possible, it may require a liquid halogen fluoride solvent, as has already been used for the characterization of radon fluoride.
History
In 1869, when Dmitri Mendeleev
Dmitri Ivanovich Mendeleev (sometimes transliterated as Mendeleyev or Mendeleef) ( ; russian: links=no, Дмитрий Иванович Менделеев, tr. , ; 8 February O.S. 27 January">Old_Style_and_New_Style_dates.html" ;"title="no ...
published his periodic table
The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of ...
, the space under iodine was empty; after Niels Bohr
Niels Henrik David Bohr (; 7 October 1885 – 18 November 1962) was a Danish physicist who made foundational contributions to understanding atomic structure and quantum theory, for which he received the Nobel Prize in Physics in 1922 ...
established the physical basis of the classification of chemical elements, it was suggested that the fifth halogen belonged there. Before its officially recognized discovery, it was called "eka-iodine" (from Sanskrit
Sanskrit (; attributively , ; nominalization, nominally , , ) is a classical language belonging to the Indo-Aryan languages, Indo-Aryan branch of the Indo-European languages. It arose in South Asia after its predecessor languages had Trans-cul ...
''eka'' – "one") to imply it was one space under iodine (in the same manner as eka-silicon, eka-boron, and others). Scientists tried to find it in nature; given its extreme rarity, these attempts resulted in several false discoveries.
The first claimed discovery of eka-iodine was made by Fred Allison
Fred C. Allison (July 4, 1882 – August 2, 1974) was an American physicist.
He developed a magneto-optic spectroscopy method that became known as the Allison magneto-optic method. He claimed to have discovered two new elements (later discredite ...
and his associates at the Alabama Polytechnic Institute (now Auburn University) in 1931. The discoverers named element 85 "alabamine", and assigned it the symbol Ab, designations that were used for a few years. In 1934, H. G. MacPherson of University of California, Berkeley
The University of California, Berkeley (UC Berkeley, Berkeley, Cal, or California) is a public land-grant research university in Berkeley, California. Established in 1868 as the University of California, it is the state's first land-grant u ...
disproved Allison's method and the validity of his discovery. There was another claim in 1937, by the chemist Rajendralal De. Working in Dacca in British India
The provinces of India, earlier presidencies of British India and still earlier, presidency towns, were the administrative divisions of British governance on the Indian subcontinent. Collectively, they have been called British India. In one ...
(now Dhaka
Dhaka ( or ; bn, ঢাকা, Ḍhākā, ), formerly known as Dacca, is the capital and largest city of Bangladesh, as well as the world's largest Bengali-speaking city. It is the eighth largest and sixth most densely populated city ...
in Bangladesh
Bangladesh (}, ), officially the People's Republic of Bangladesh, is a country in South Asia. It is the List of countries and dependencies by population, eighth-most populous country in the world, with a population exceeding 165 million pe ...
), he chose the name "dakin" for element 85, which he claimed to have isolated as the thorium series
In nuclear science, the decay chain refers to a series of radioactive decays of different radioactive decay products as a sequential series of transformations. It is also known as a "radioactive cascade". Most radioisotopes do not decay direct ...
equivalent of radium F (polonium-210) in the radium series
In nuclear science, the decay chain refers to a series of radioactive decays of different radioactive decay products as a sequential series of transformations. It is also known as a "radioactive cascade". Most radioisotopes do not decay directl ...
.[ The properties he reported for dakin do not correspond to those of astatine,][ and astatine's radioactivity would have prevented him from handling it in the quantities he claimed.][ Moreover, astatine is not found in the thorium series, and the true identity of dakin is not known.]
In 1936, the team of Romanian physicist Horia Hulubei and French physicist Yvette Cauchois claimed to have discovered element 85 by observing its X-ray emission lines. In 1939, they published another paper which supported and extended previous data. In 1944, Hulubei published a summary of data he had obtained up to that time, claiming it was supported by the work of other researchers. He chose the name "dor", presumably from the Romanian for "longing" or peace
Or or OR may refer to:
Arts and entertainment Film and television
* "O.R.", a 1974 episode of M*A*S*H
* Or (My Treasure), a 2004 movie from Israel (''Or'' means "light" in Hebrew)
Music
* ''Or'' (album), a 2002 album by Golden Boy with Mis ...
as World War II
World War II or the Second World War, often abbreviated as WWII or WW2, was a world war that lasted from 1939 to 1945. It involved the World War II by country, vast majority of the world's countries—including all of the great power ...
had started five years earlier. As Hulubei was writing in French, a language which does not accommodate the "ine" suffix, dor would likely have been rendered in English as "dorine", had it been adopted. In 1947, Hulubei's claim was effectively rejected by the Austrian chemist Friedrich Paneth
Friedrich Adolf Paneth (31 August 1887 – 17 September 1958) was an Austrian-born British chemist. Fleeing the Nazis, he escaped to Britain. He became a naturalized British citizen in 1939. After the war, Paneth returned to Germany to b ...
, who would later chair the IUPAC
The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
committee responsible for recognition of new elements. Even though Hulubei's samples did contain astatine-218, his means to detect it were too weak, by current standards, to enable correct identification; moreover, he could not perform chemical tests on the element. He had also been involved in an earlier false claim as to the discovery of element 87 (francium) and this is thought to have caused other researchers to downplay his work.
In 1940, the Swiss chemist Walter Minder
Walter Minder (August 6, 1905 – April 1, 1992) was a Swiss mineralogist and chemist. In 1931, he became professor of radiology at the Institut du Radium at the University of Bern. He together with Alice Leigh-Smith announced the discovery of el ...
announced the discovery of element 85 as the beta decay product
In nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps (d ...
of radium A (polonium-218), choosing the name "helvetium" (from , the Latin name of Switzerland). Berta Karlik and Traude Bernert were unsuccessful in reproducing his experiments, and subsequently attributed Minder's results to contamination of his radon stream (radon-222
Radon-222 (222Rn, Rn-222, historically radium emanation or radon) is the most stable isotope of radon, with a half-life of approximately 3.8 days. It is transient in the decay chain of primordial uranium-238 and is the immediate decay product of ...
is the parent isotope of polonium-218). In 1942, Minder, in collaboration with the English scientist Alice Leigh-Smith, announced the discovery of another isotope of element 85, presumed to be the product of thorium A (polonium-216) beta decay. They named this substance "anglo-helvetium", but Karlik and Bernert were again unable to reproduce these results.[ ]
Later in 1940, Dale R. Corson
Dale Raymond Corson (April 5, 1914 – March 31, 2012) was the eighth president of Cornell University. Born in Pittsburg, Kansas, in 1914, Corson received a B.A. degree from the College of Emporia in 1934, his M.A. degree from the University ...
, Kenneth Ross MacKenzie, and Emilio Segrè
Emilio Gino Segrè (1 February 1905 – 22 April 1989) was an Italian-American physicist and Nobel laureate, who discovered the elements technetium and astatine, and the antiproton, a subatomic antiparticle, for which he was awarded the N ...
isolated the element at the University of California, Berkeley. Instead of searching for the element in nature, the scientists created it by bombarding bismuth-209
Bismuth-209 (209Bi) is the isotope of bismuth with the longest known half-life of any radioisotope that undergoes α-decay ( alpha decay). It has 83 protons and a magic number of 126 neutrons, and an atomic mass of 208.9803987 amu (atomic mass u ...
with alpha particle
Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be pro ...
s in a cyclotron
A cyclotron is a type of particle accelerator invented by Ernest O. Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. Lawrence, Ernest O. ''Method and apparatus for the acceleration of ions'', filed: J ...
(particle accelerator) to produce, after emission of two neutrons, astatine-211. The discoverers, however, did not immediately suggest a name for the element. The reason for this was that at the time, an element created synthetically in "invisible quantities" that had not yet been discovered in nature was not seen as a completely valid one; in addition, chemists were reluctant to recognize radioactive isotopes as legitimately as stable ones. In 1943, astatine was found as a product of two naturally occurring decay chain
In nuclear science, the decay chain refers to a series of radioactive decays of different radioactive decay products as a sequential series of transformations. It is also known as a "radioactive cascade". Most radioisotopes do not decay dire ...
s by Berta Karlik and Traude Bernert, first in the so-called uranium series
In nuclear science, the decay chain refers to a series of radioactive decays of different radioactive decay products as a sequential series of transformations. It is also known as a "radioactive cascade". Most radioisotopes do not decay direc ...
, and then in the actinium series
In nuclear science, the decay chain refers to a series of radioactive decays of different radioactive decay products as a sequential series of transformations. It is also known as a "radioactive cascade". Most radioisotopes do not decay directl ...
. (Since then, astatine was also found in a third decay chain, the neptunium series
In nuclear science, the decay chain refers to a series of radioactive decays of different radioactive decay products as a sequential series of transformations. It is also known as a "radioactive cascade". Most radioisotopes do not decay directl ...
.) Friedrich Paneth in 1946 called to finally recognize synthetic elements, quoting, among other reasons, recent confirmation of their natural occurrence, and proposed that the discoverers of the newly discovered unnamed elements name these elements. In early 1947, ''Nature
Nature, in the broadest sense, is the physical world or universe. "Nature" can refer to the phenomena of the physical world, and also to life in general. The study of nature is a large, if not the only, part of science. Although humans ar ...
'' published the discoverers' suggestions; a letter from Corson, MacKenzie, and Segrè suggested the name "astatine" coming from the Greek
Greek may refer to:
Greece
Anything of, from, or related to Greece, a country in Southern Europe:
*Greeks, an ethnic group.
*Greek language, a branch of the Indo-European language family.
**Proto-Greek language, the assumed last common ancestor ...
''astatos'' (αστατος) meaning "unstable", because of its propensity for radioactive decay
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consid ...
, with the ending "-ine", found in the names of the four previously discovered halogens. The name was also chosen to continue the tradition of the four stable halogens, where the name referred to a property of the element.
Corson and his colleagues classified astatine as a metal on the basis of its analytical chemistry
Analytical chemistry studies and uses instruments and methods to separate, identify, and quantify matter. In practice, separation, identification or quantification may constitute the entire analysis or be combined with another method. Separati ...
. Subsequent investigators reported iodine-like, cationic, or amphoteric
In chemistry, an amphoteric compound () is a molecule or ion that can react both as an acid and as a base. What exactly this can mean depends on which definitions of acids and bases are being used.
One type of amphoteric species are amphip ...
behavior. In a 2003 retrospective, Corson wrote that "some of the properties f astatine
F, or f, is the sixth letter in the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is ''ef'' (pronounced ), and the plural is ''efs''.
Hist ...
are similar to iodine … it also exhibits metallic properties, more like its metallic neighbors Po and Bi."
Isotopes
There are 39 known isotope
Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers ( mass number ...
s of astatine, with atomic masses (mass numbers) of 191–229. Theoretical modeling suggests that 37 more isotopes could exist. No stable or long-lived astatine isotope has been observed, nor is one expected to exist.
Astatine's alpha decay
Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an a ...
energies follow the same trend as for other heavy elements. Lighter astatine isotopes have quite high energies of alpha decay, which become lower as the nuclei become heavier. Astatine-211 has a significantly higher energy than the previous isotope, because it has a nucleus with 126 neutrons, and 126 is a magic number corresponding to a filled neutron shell. Despite having a similar half-life to the previous isotope (8.1 hours for astatine-210 and 7.2 hours for astatine-211), the alpha decay probability is much higher for the latter: 41.81% against only 0.18%. The two following isotopes release even more energy, with astatine-213 releasing the most energy. For this reason, it is the shortest-lived astatine isotope. Even though heavier astatine isotopes release less energy, no long-lived astatine isotope exists, because of the increasing role of beta decay
In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For e ...
(electron emission). This decay mode is especially important for astatine; as early as 1950 it was postulated that all isotopes of the element undergo beta decay, though nuclear mass measurements indicate that 215At is in fact beta-stable
Beta-decay stable isobars are the set of nuclides which cannot undergo beta decay, that is, the transformation of a neutron to a proton or a proton to a neutron within the nucleus. A subset of these nuclides are also stable with regards to doub ...
, as it has the lowest mass of all isobars with ''A'' = 215. A beta decay mode has been found for all other astatine isotopes except for astatine-213, astatine-214, and astatine-216m. Astatine-210 and lighter isotopes exhibit beta plus decay (positron emission
Positron emission, beta plus decay, or β+ decay is a subtype of radioactive decay called beta decay, in which a proton inside a radionuclide nucleus is converted into a neutron while releasing a positron and an electron neutrino (). Positron e ...
), astatine-216 and heavier isotopes exhibit beta minus decay, and astatine-212 decays via both modes, while astatine-211 undergoes electron capture
Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. T ...
.
The most stable isotope is astatine-210, which has a half-life of 8.1 hours. The primary decay mode is beta plus, to the relatively long-lived (in comparison to astatine isotopes) alpha emitter polonium-210
Polonium-210 (210Po, Po-210, historically radium F) is an isotope of polonium. It undergoes alpha decay to stable 206Pb with a half-life of 138.376 days (about months), the longest half-life of all naturally occurring polonium isotopes. First ...
. In total, only five isotopes have half-lives exceeding one hour (astatine-207 to -211). The least stable ground state isotope is astatine-213, with a half-life of 125 nanoseconds. It undergoes alpha decay to the extremely long-lived bismuth-209
Bismuth-209 (209Bi) is the isotope of bismuth with the longest known half-life of any radioisotope that undergoes α-decay ( alpha decay). It has 83 protons and a magic number of 126 neutrons, and an atomic mass of 208.9803987 amu (atomic mass u ...
.
Astatine has 24 known nuclear isomer
A nuclear isomer is a metastable state of an atomic nucleus, in which one or more nucleons (protons or neutrons) occupy higher energy levels than in the ground state of the same nucleus. "Metastable" describes nuclei whose excited states have ...
s, which are nuclei with one or more nucleon
In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number).
Until the 1960s, nucleons w ...
s ( protons or neutron
The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behav ...
s) in an excited state
In quantum mechanics, an excited state of a system (such as an atom, molecule or nucleus) is any quantum state of the system that has a higher energy than the ground state (that is, more energy than the absolute minimum). Excitation refers t ...
. A nuclear isomer may also be called a "meta
Meta (from the Greek μετά, '' meta'', meaning "after" or "beyond") is a prefix meaning "more comprehensive" or "transcending".
In modern nomenclature, ''meta''- can also serve as a prefix meaning self-referential, as a field of study or ende ...
-state", meaning the system has more internal energy
The internal energy of a thermodynamic system is the total energy contained within it. It is the energy necessary to create or prepare the system in its given internal state, and includes the contributions of potential energy and internal kinet ...
than the " ground state" (the state with the lowest possible internal energy), making the former likely to decay into the latter. There may be more than one isomer for each isotope. The most stable of these nuclear isomers is astatine-202m1, which has a half-life of about 3 minutes, longer than those of all the ground states bar those of isotopes 203–211 and 220. The least stable is astatine-214m1; its half-life of 265 nanosecond
A nanosecond (ns) is a unit of time in the International System of Units (SI) equal to one billionth of a second, that is, of a second, or 10 seconds.
The term combines the SI prefix ''nano-'' indicating a 1 billionth submultiple of an SI unit ...
s is shorter than those of all ground states except that of astatine-213.
Natural occurrence
Astatine is the rarest naturally occurring element. The total amount of astatine in the Earth's crust (quoted mass 2.36 × 1025 grams) is estimated by some to be less than one gram at any given time. Other sources estimate the amount of ephemeral astatine, present on earth at any given moment, to be up to one ounce (about 28 grams).
Any astatine present at the formation of the Earth has long since disappeared; the four naturally occurring isotopes (astatine-215, -217, -218 and -219) are instead continuously produced as a result of the decay of radioactive thorium
Thorium is a weakly radioactive metallic chemical element with the symbol Th and atomic number 90. Thorium is silvery and tarnishes black when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high ...
and uranium
Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weakly ...
ores, and trace quantities of neptunium-237
Neptunium (93Np) is usually considered an artificial element, although trace quantities are found in nature, so a standard atomic weight cannot be given. Like all trace or artificial elements, it has no stable isotopes. The first isotope to be s ...
. The landmass of North and South America combined, to a depth of 16 kilometers (10 miles), contains only about one trillion astatine-215 atoms at any given time (around 3.5 × 10−10 grams). Astatine-217 is produced via the radioactive decay of neptunium-237. Primordial remnants of the latter isotope—due to its relatively short half-life of 2.14 million years—are no longer present on Earth. However, trace amounts occur naturally as a product of transmutation reactions in uranium ore
Uranium ore deposits are economically recoverable concentrations of uranium within the Earth's crust. Uranium is one of the more common elements in the Earth's crust, being 40 times more common than silver and 500 times more common than gold. It ...
s. Astatine-218 was the first astatine isotope discovered in nature. Astatine-219, with a half-life of 56 seconds, is the longest lived of the naturally occurring isotopes.
Isotopes of astatine are sometimes not listed as naturally occurring because of misconceptions that there are no such isotopes, or discrepancies in the literature. Astatine-216 has been counted as a naturally occurring isotope but reports of its observation (which were described as doubtful) have not been confirmed.
Synthesis
Formation
Astatine was first produced by bombarding bismuth-209 with energetic alpha particles, and this is still the major route used to create the relatively long-lived isotopes astatine-209 through astatine-211. Astatine is only produced in minuscule quantities, with modern techniques allowing production runs of up to 6.6 giga
Giga ( or ) is a unit prefix in the metric system denoting a factor of a short-scale billion or long-scale milliard (109 or ). It has the symbol G.
''Giga'' is derived from the Greek word (''gígas''), meaning "giant". The ''Oxford English Di ...
becquerel
The becquerel (; symbol: Bq) is the unit of radioactivity in the International System of Units (SI). One becquerel is defined as the activity of a quantity of radioactive material in which one nucleus decays per second. For applications relat ...
s (about 86 nanogram
To help compare different orders of magnitude, the following lists describe various mass levels between 10−59 kg and 1052 kg. The least massive thing listed here is a graviton, and the most massive thing is the observable universe. ...
s or 2.47 × 1014 atoms). Synthesis of greater quantities of astatine using this method is constrained by the limited availability of suitable cyclotrons and the prospect of melting the target. Solvent radiolysis
Radiolysis is the dissociation of molecules by ionizing radiation. It is the cleavage of one or several chemical bonds resulting from exposure to high-energy flux. The radiation in this context is associated with ionizing radiation; radiolysis is ...
due to the cumulative effect of astatine decay is a related problem. With cryogenic technology, microgram
In the metric system, a microgram or microgramme is a unit of mass equal to one millionth () of a gram. The unit symbol is μg according to the International System of Units (SI); the recommended symbol in the United States and United Kingdom wh ...
quantities of astatine might be able to be generated via proton irradiation of thorium
Thorium is a weakly radioactive metallic chemical element with the symbol Th and atomic number 90. Thorium is silvery and tarnishes black when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high ...
or uranium
Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weakly ...
to yield radon-211, in turn decaying to astatine-211. Contamination with astatine-210 is expected to be a drawback of this method.
The most important isotope is astatine-211, the only one in commercial use. To produce the bismuth target, the metal is sputtered onto a gold, copper, or aluminium surface at 50 to 100 milligrams per square centimeter. Bismuth oxide
Bismuth(III) oxide is perhaps the most industrially important compound of bismuth. It is also a common starting point for bismuth chemistry. It is found naturally as the mineral bismite (monoclinic) and sphaerobismoite (tetragonal, much more rare ...
can be used instead; this is forcibly fused with a copper plate. The target is kept under a chemically neutral nitrogen atmosphere, and is cooled with water to prevent premature astatine vaporization. In a particle accelerator, such as a cyclotron, alpha particles are collided with the bismuth. Even though only one bismuth isotope is used (bismuth-209), the reaction may occur in three possible ways, producing astatine-209, astatine-210, or astatine-211. In order to eliminate undesired nuclides, the maximum energy of the particle accelerator is set to a value (optimally 29.17 MeV) above that for the reaction producing astatine-211 (to produce the desired isotope) and below the one producing astatine-210 (to avoid producing other astatine isotopes).
Separation methods
Since astatine is the main product of the synthesis, after its formation it must only be separated from the target and any significant contaminants. Several methods are available, "but they generally follow one of two approaches—dry distillation or etacid treatment of the target followed by solvent extraction." The methods summarized below are modern adaptations of older procedures, as reviewed by Kugler and Keller. Pre-1985 techniques more often addressed the elimination of co-produced toxic polonium; this requirement is now mitigated by capping the energy of the cyclotron irradiation beam.
Dry
The astatine-containing cyclotron target is heated to a temperature of around 650 °C. The astatine volatilizes and is condensed in (typically) a cold trap
In vacuum applications, a cold trap is a device that condenses all vapors except the permanent gases into a liquid or solid. The most common objective is to prevent vapors being evacuated from an experiment from entering a vacuum pump where the ...
. Higher temperatures of up to around 850 °C may increase the yield, at the risk of bismuth contamination from concurrent volatilization. Redistilling the condensate may be required to minimize the presence of bismuth (as bismuth can interfere with astatine labeling reactions). The astatine is recovered from the trap using one or more low concentration solvents such as sodium hydroxide
Sodium hydroxide, also known as lye and caustic soda, is an inorganic compound with the formula NaOH. It is a white solid ionic compound consisting of sodium cations and hydroxide anions .
Sodium hydroxide is a highly caustic base and alkal ...
, methanol or chloroform
Chloroform, or trichloromethane, is an organic compound with formula C H Cl3 and a common organic solvent. It is a colorless, strong-smelling, dense liquid produced on a large scale as a precursor to PTFE. It is also a precursor to various re ...
. Astatine yields of up to around 80% may be achieved. Dry separation is the method most commonly used to produce a chemically useful form of astatine.
Wet
The irradiated bismuth (or sometimes bismuth trioxide) target is first dissolved in, for example, concentrated nitric or perchloric acid. Following this first step, the acid can be distilled away to leave behind a white residue that contains both bismuth and the desired astatine product. This residue is then dissolved in a concentrated acid, such as hydrochloric acid. Astatine is extracted from this acid using an organic solvent such as butyl
In organic chemistry, butyl is a four-carbon alkyl radical or substituent group with general chemical formula , derived from either of the two isomers (''n''-butane and isobutane) of butane.
The isomer ''n''-butane can connect in two ways, giv ...
or isopropyl ether, diisopropylether (DIPE), or thiosemicarbazide
Thiosemicarbazide is the chemical compound with the formula H2NC(S)NHNH2. A white, odorless solid, it is related to thiourea (H2NC(S)NH2) by the insertion of an NH center. They are commonly used as ligands for transition metals. Many thiosemic ...
. Using liquid-liquid extraction, the astatine product can be repeatedly washed with an acid, such as HCl, and extracted into the organic solvent layer. A separation yield of 93% using nitric acid has been reported, falling to 72% by the time purification procedures were completed (distillation of nitric acid, purging residual nitrogen oxide Nitrogen oxide may refer to a binary compound of oxygen and nitrogen, or a mixture of such compounds:
Charge-neutral
* Nitric oxide (NO), nitrogen(II) oxide, or nitrogen monoxide
*Nitrogen dioxide (), nitrogen(IV) oxide
* Nitrogen trioxide (), o ...
s, and redissolving bismuth nitrate to enable liquid–liquid extraction
Liquid–liquid extraction (LLE), also known as solvent extraction and partitioning, is a method to separate compounds or metal complexes, based on their relative solubilities in two different immiscible liquids, usually water (polar) and an orga ...
). Wet methods involve "multiple radioactivity handling steps" and have not been considered well suited for isolating larger quantities of astatine. However, wet extraction methods are being examined for use in production of larger quantities of astatine-211, as it is thought that wet extraction methods can provide more consistency. They can enable the production of astatine in a specific oxidation state
In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. ...
and may have greater applicability in experimental radiochemistry
Radiochemistry is the chemistry of radioactive materials, where radioactive isotopes of elements are used to study the properties and chemical reactions of non-radioactive isotopes (often within radiochemistry the absence of radioactivity leads t ...
.
Uses and precautions
:
Newly formed astatine-211 is the subject of ongoing research in nuclear medicine
Nuclear medicine or nucleology is a medical specialty involving the application of radioactive substances in the diagnosis and treatment of disease. Nuclear imaging, in a sense, is "radiology done inside out" because it records radiation emit ...
. It must be used quickly as it decays with a half-life of 7.2 hours; this is long enough to permit multistep labeling strategies. Astatine-211 has potential for targeted alpha-particle therapy Targeted alpha-particle therapy (or TAT) is an in-development method of targeted radionuclide therapy of various cancers. It employs radioactive substances which undergo alpha decay to treat diseased tissue at close proximity. It has the potential t ...
, since it decays either via emission of an alpha particle (to bismuth-207), or via electron capture (to an extremely short-lived nuclide, polonium-211, which undergoes further alpha decay), very quickly reaching its stable granddaughter lead-207. Polonium X-rays emitted as a result of the electron capture branch, in the range of 77–92 keV, enable the tracking of astatine in animals and patients. Although astatine-210 has a slightly longer half-life, it is wholly unsuitable because it usually undergoes beta plus decay to the extremely toxic polonium-210.
The principal medicinal difference between astatine-211 and iodine-131
Iodine-131 (131I, I-131) is an important radioisotope of iodine discovered by Glenn Seaborg and John Livingood in 1938 at the University of California, Berkeley. It has a radioactive decay half-life of about eight days. It is associated with nu ...
(a radioactive iodine isotope also used in medicine) is that iodine-131 emits high-energy beta particles, and astatine does not. Beta particles have much greater penetrating power through tissues than do the much heavier alpha particles. An average alpha particle released by astatine-211 can travel up to 70 µm through surrounding tissues; an average-energy beta particle emitted by iodine-131 can travel nearly 30 times as far, to about 2 mm. The short half-life and limited penetrating power of alpha radiation through tissues offers advantages in situations where the "tumor burden is low and/or malignant cell populations are located in close proximity to essential normal tissues." Significant morbidity in cell culture models of human cancers has been achieved with from one to ten astatine-211 atoms bound per cell.
Several obstacles have been encountered in the development of astatine-based radiopharmaceuticals
Radiopharmaceuticals, or medicinal radiocompounds, are a group of pharmaceutical drugs containing radioactive isotopes. Radiopharmaceuticals can be used as diagnostic and therapeutic agents. Radiopharmaceuticals emit radiation themselves, which is ...
for cancer
Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal bl ...
treatment. World War II
World War II or the Second World War, often abbreviated as WWII or WW2, was a world war that lasted from 1939 to 1945. It involved the World War II by country, vast majority of the world's countries—including all of the great power ...
delayed research for close to a decade. Results of early experiments indicated that a cancer-selective carrier would need to be developed and it was not until the 1970s that monoclonal antibodies
A monoclonal antibody (mAb, more rarely called moAb) is an antibody produced from a cell Lineage made by cloning a unique white blood cell. All subsequent antibodies derived this way trace back to a unique parent cell.
Monoclonal antibodies ...
became available for this purpose. Unlike iodine, astatine shows a tendency to dehalogenate from molecular carriers such as these, particularly at sp3 carbon sites (less so from sp2 sites). Given the toxicity of astatine accumulated and retained in the body, this emphasized the need to ensure it remained attached to its host molecule. While astatine carriers that are slowly metabolized can be assessed for their efficacy, more rapidly metabolized carriers remain a significant obstacle to the evaluation of astatine in nuclear medicine. Mitigating the effects of astatine-induced radiolysis of labeling chemistry and carrier molecules is another area requiring further development. A practical application for astatine as a cancer treatment would potentially be suitable for a "staggering" number of patients; production of astatine in the quantities that would be required remains an issue.
Animal studies show that astatine, similarly to iodine—although to a lesser extent, perhaps because of its slightly more metallic nature[Stwertka, Albert. ''A Guide to the Elements'', Oxford University Press, 1996, p. 193. ]—is preferentially (and dangerously) concentrated in the thyroid gland
The thyroid, or thyroid gland, is an endocrine gland in vertebrates. In humans it is in the neck and consists of two connected lobes. The lower two thirds of the lobes are connected by a thin band of tissue called the thyroid isthmus. The thyr ...
. Unlike iodine, astatine also shows a tendency to be taken up by the lungs and spleen, possibly because of in-body oxidation of At– to At+. If administered in the form of a radiocolloid it tends to concentrate in the liver
The liver is a major organ only found in vertebrates which performs many essential biological functions such as detoxification of the organism, and the synthesis of proteins and biochemicals necessary for digestion and growth. In humans, it ...
. Experiments in rats and monkeys suggest that astatine-211 causes much greater damage to the thyroid gland than does iodine-131, with repetitive injection of the nuclide resulting in necrosis and cell dysplasia
Dysplasia is any of various types of abnormal growth or development of cells ( microscopic scale) or organs (macroscopic scale), and the abnormal histology or anatomical structure(s) resulting from such growth. Dysplasias on a mainly microscopi ...
within the gland. Early research suggested that injection of astatine into female rodents caused morphological changes in breast tissue; this conclusion remained controversial for many years. General agreement was later reached that this was likely caused by the effect of breast tissue irradiation combined with hormonal changes due to irradiation of the ovaries. Trace amounts of astatine can be handled safely in fume hoods if they are well-aerated; biological uptake of the element must be avoided.
See also
* Radiation protection
Radiation protection, also known as radiological protection, is defined by the International Atomic Energy Agency (IAEA) as "The protection of people from harmful effects of exposure to ionizing radiation, and the means for achieving this". Expos ...
Notes
References
Bibliography
*
*
*
*
*
*
*
*
External links
Astatine
at '' The Periodic Table of Videos'' (University of Nottingham)
Astatine: Halogen or Metal?
{{featured article
Chemical elements
Halogens
Chemical elements with face-centered cubic structure
Synthetic elements