HOME

TheInfoList



OR:

In mathematics, the Askey–Gasper inequality is an inequality for Jacobi polynomials proved by and used in the proof of the
Bieberbach conjecture In complex analysis, de Branges's theorem, or the Bieberbach conjecture, is a theorem that gives a necessary condition on a holomorphic function in order for it to map the open unit disk of the complex plane injectively to the complex plane. It was ...
.


Statement

It states that if \beta\geq 0, \alpha+\beta\geq -2, and -1\leq x\leq 1 then :\sum_^n \frac \ge 0 where :P_k^(x) is a Jacobi polynomial. The case when \beta=0 can also be written as :_3F_2 \left (-n,n+\alpha+2,\tfrac(\alpha+1);\tfrac(\alpha+3),\alpha+1;t \right)>0, \qquad 0\leq t<1, \quad \alpha>-1. In this form, with a non-negative integer, the inequality was used by Louis de Branges in his proof of the
Bieberbach conjecture In complex analysis, de Branges's theorem, or the Bieberbach conjecture, is a theorem that gives a necessary condition on a holomorphic function in order for it to map the open unit disk of the complex plane injectively to the complex plane. It was ...
.


Proof

gave a short proof of this inequality, by combining the identity :\begin \frac &\times _3F_2 \left (-n,n+\alpha+2,\tfrac(\alpha+1);\tfrac(\alpha+3),\alpha+1;t \right) = \\ &= \frac \times _3F_2\left (-n+2j,n-2j+\alpha+1,\tfrac(\alpha+1);\tfrac(\alpha+2),\alpha+1;t \right ) \end with the Clausen inequality.


Generalizations

give some generalizations of the Askey–Gasper inequality to
basic hypergeometric series In mathematics, basic hypergeometric series, or ''q''-hypergeometric series, are ''q''-analogue generalizations of generalized hypergeometric series, and are in turn generalized by elliptic hypergeometric series. A series ''x'n'' is called ...
.


See also

* Turán's inequalities


References

* * * * {{DEFAULTSORT:Askey-Gasper inequality Inequalities Special functions Orthogonal polynomials