Artin Billiard
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
and
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
, the Artin billiard is a type of a dynamical billiard first studied by
Emil Artin Emil Artin (; March 3, 1898 – December 20, 1962) was an Austrians, Austrian mathematician of Armenians, Armenian descent. Artin was one of the leading mathematicians of the twentieth century. He is best known for his work on algebraic number t ...
in 1924. It describes the geodesic motion of a free particle on the non-compact
Riemann surface In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed vers ...
\mathbb/\Gamma, where \mathbb is the
upper half-plane In mathematics, the upper half-plane, is the set of points in the Cartesian plane with The lower half-plane is the set of points with instead. Arbitrary oriented half-planes can be obtained via a planar rotation. Half-planes are an example ...
endowed with the
Poincaré metric In mathematics, the Poincaré metric, named after Henri Poincaré, is the metric tensor describing a two-dimensional surface of constant negative curvature. It is the natural metric commonly used in a variety of calculations in hyperbolic geometry ...
and \Gamma=PSL(2,\mathbb) is the
modular group In mathematics, the modular group is the projective special linear group \operatorname(2,\mathbb Z) of 2\times 2 matrices with integer coefficients and determinant 1, such that the matrices A and -A are identified. The modular group acts on ...
. It can be viewed as the motion on the
fundamental domain Given a topological space and a group acting on it, the images of a single point under the group action form an orbit of the action. A fundamental domain or fundamental region is a subset of the space which contains exactly one point from each ...
of the modular group with the sides identified. The system is notable in that it is an exactly solvable system that is strongly chaotic: it is not only
ergodic In mathematics, ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will eventually visit all parts of the space that the system moves in, in a uniform and random sense. This implies th ...
, but is also strong mixing. As such, it is an example of an
Anosov flow In mathematics, more particularly in the fields of dynamical systems and geometric topology, an Anosov map on a manifold ''M'' is a certain type of mapping, from ''M'' to itself, with rather clearly marked local directions of "expansion" and "contr ...
. Artin's paper used
symbolic dynamics In mathematics, symbolic dynamics is the study of dynamical systems defined on a discrete space consisting of infinite sequences of abstract symbols. The evolution of the dynamical system is defined as a simple shift of the sequence. Because of t ...
for analysis of the system. The
quantum mechanical Quantum mechanics is the fundamental physical theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is the foundation of a ...
version of Artin's billiard is also exactly solvable. The eigenvalue spectrum consists of a bound state and a continuous spectrum above the energy E=1/4. The
wave functions In quantum physics, a wave function (or wavefunction) is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters and (lower-case and capital psi, respec ...
are given by
Bessel function Bessel functions, named after Friedrich Bessel who was the first to systematically study them in 1824, are canonical solutions of Bessel's differential equation x^2 \frac + x \frac + \left(x^2 - \alpha^2 \right)y = 0 for an arbitrary complex ...
s.


Exposition

The motion studied is that of a free particle sliding frictionlessly, namely, one having the
Hamiltonian Hamiltonian may refer to: * Hamiltonian mechanics, a function that represents the total energy of a system * Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system ** Dyall Hamiltonian, a modified Hamiltonian ...
:H(p,q)=\frac p_i p_j g^(q) where ''m'' is the mass of the particle, q^i, i=1,2 are the coordinates on the manifold, p_i are the
conjugate momenta In mathematics and classical mechanics, canonical coordinates are sets of coordinates on phase space which can be used to describe a physical system at any given point in time. Canonical coordinates are used in the Hamiltonian formulation of cla ...
: :p_i=mg_ \frac and :ds^2=g_(q) \, dq^i \, dq^j is the
metric tensor In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows ...
on the manifold. Because this is the free-particle Hamiltonian, the solution to the Hamilton-Jacobi equations of motion are simply given by the
geodesic In geometry, a geodesic () is a curve representing in some sense the locally shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a conn ...
s on the manifold. In the case of the Artin billiards, the metric is given by the canonical Poincaré metric :ds^2=\frac on the upper half-plane. The non-compact Riemann surface \mathcal/\Gamma is a
symmetric space In mathematics, a symmetric space is a Riemannian manifold (or more generally, a pseudo-Riemannian manifold) whose group of isometries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geome ...
, and is defined as the quotient of the upper half-plane modulo the action of the elements of PSL(2,\mathbb) acting as
Möbius transformation In geometry and complex analysis, a Möbius transformation of the complex plane is a rational function of the form f(z) = \frac of one complex number, complex variable ; here the coefficients , , , are complex numbers satisfying . Geometrically ...
s. The set :U = \left\{ z \in H: \left, z \ > 1,\, \left, \,\mbox{Re}(z) \,\ < \frac{1}{2} \right\} is a
fundamental domain Given a topological space and a group acting on it, the images of a single point under the group action form an orbit of the action. A fundamental domain or fundamental region is a subset of the space which contains exactly one point from each ...
for this action. The manifold has, of course, one
cusp A cusp is the most pointed end of a curve. It often refers to cusp (anatomy), a pointed structure on a tooth. Cusp or CUSP may also refer to: Mathematics * Cusp (singularity), a singular point of a curve * Cusp catastrophe, a branch of bifu ...
. This is the same manifold, when taken as the
complex manifold In differential geometry and complex geometry, a complex manifold is a manifold with a ''complex structure'', that is an atlas (topology), atlas of chart (topology), charts to the open unit disc in the complex coordinate space \mathbb^n, such th ...
, that is the space on which
elliptic curve In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If the ...
s and
modular function In mathematics, a modular form is a holomorphic function on the complex upper half-plane, \mathcal, that roughly satisfies a functional equation with respect to the group action of the modular group and a growth condition. The theory of modula ...
s are studied.


References

* E. Artin, "Ein mechanisches System mit quasi-ergodischen Bahnen", ''Abh. Math. Sem. d. Hamburgischen Universität'', 3 (1924) pp170-175. Chaotic maps Ergodic theory