Artificial Ligament
   HOME

TheInfoList



OR:

Artificial ligaments are devices used to replace damaged
ligament A ligament is a type of fibrous connective tissue in the body that connects bones to other bones. It also connects flight feathers to bones, in dinosaurs and birds. All 30,000 species of amniotes (land animals with internal bones) have liga ...
s. Today, the most common use of artificial ligaments is in
anterior cruciate ligament reconstruction Anterior cruciate ligament reconstruction (ACL reconstruction) is a surgical tissue graft replacement of the anterior cruciate ligament, located in the knee, to restore its function after an injury. The torn ligament can either be removed from ...
. Although
autotransplantation Autotransplantation is the transplantation of organs, tissues, or even particular proteins from one part of the body to another in the same person ('' auto-'' meaning "self" in Greek). The autologous tissue (also called autogenous, autogenei ...
remains the most common method of ligament reconstruction, numerous materials and structures were developed to optimize the artificial ligament since its creation in the
World War I World War I or the First World War (28 July 1914 – 11 November 1918), also known as the Great War, was a World war, global conflict between two coalitions: the Allies of World War I, Allies (or Entente) and the Central Powers. Fighting to ...
era. Many modern artificial ligaments are made of synthetic polymers, such as
polyethylene terephthalate Polyethylene terephthalate (or poly(ethylene terephthalate), PET, PETE, or the obsolete PETP or PET-P), is the most common thermoplastic polymer resin of the polyester family and is used in synthetic fibre, fibres for clothing, packaging, conta ...
. Various coatings have been added to improve the biocompatibility of the synthetic polymers. Early artificial ligaments developed in the 1980s were ineffective due to material deterioration. Currently, the Ligament Advanced Reinforcement System (LARS) artificial ligament has been utilized extensively in clinical applications.
Tissue engineering Tissue engineering is a biomedical engineering discipline that uses a combination of cells, engineering, materials methods, and suitable biochemical and physicochemical factors to restore, maintain, improve, or replace different types of biolo ...
is a growing area of research which aims to regenerate and restore ligament function.


History

Artificial ligament research began in the
World War I World War I or the First World War (28 July 1914 – 11 November 1918), also known as the Great War, was a World war, global conflict between two coalitions: the Allies of World War I, Allies (or Entente) and the Central Powers. Fighting to ...
era. In the first documented case of an artificial ligament in 1914, Dr. Corner utilized a piece of silver filament as synthetic graft to reconstruct a ruptured
anterior cruciate ligament The anterior cruciate ligament (ACL) is one of a pair of cruciate ligaments (the other being the posterior cruciate ligament) in the human knee. The two ligaments are called "cruciform" ligaments, as they are arranged in a crossed formation. In ...
( ACL). A ligament made of silk was used to replace an ACL in 1918. In the early 1980s, technological progress in chemistry and materials science promoted the development of medically suitable materials. Doctors utilized these synthetic materials in clinical applications. The
Food and Drug Administration The United States Food and Drug Administration (FDA or US FDA) is a List of United States federal agencies, federal agency of the United States Department of Health and Human Services, Department of Health and Human Services. The FDA is respo ...
(FDA) approved an artificial ligament made of
Gore-Tex Gore-Tex is W. L. Gore & Associates's trade name for waterproof, breathable fabric membrane. It was invented in 1969. Gore-Tex blocks liquid water while allowing water vapor to pass through and is designed to be a lightweight, waterproof fabri ...
for use in ACL reconstruction in 1986. The design of artificial ligaments in the 1980s consisted of two major parts: a relatively stiff cable or tape, and silicone rubber cylinders on one or both ends. The cable or tape was usually made of
polyethylene Polyethylene or polythene (abbreviated PE; IUPAC name polyethene or poly(methylene)) is the most commonly produced plastic. It is a polymer, primarily used for packaging (plastic bags, plastic films, geomembranes and containers including bott ...
,
nylon Nylon is a family of synthetic polymers characterised by amide linkages, typically connecting aliphatic or Polyamide#Classification, semi-aromatic groups. Nylons are generally brownish in color and can possess a soft texture, with some varieti ...
or
carbon fiber Carbon fiber-reinforced polymers (American English), carbon-fibre-reinforced polymers ( Commonwealth English), carbon-fiber-reinforced plastics, carbon-fiber reinforced-thermoplastic (CFRP, CRP, CFRTP), also known as carbon fiber, carbon comp ...
. The
silicone rubber Silicone rubber is an elastomer composed of silicone—itself a polymer—containing silicon together with carbon, hydrogen, and oxygen. Silicone rubbers are widely used in industry, and there are multiple formulations. Silicone rubbers ar ...
cylinder varied in size to fit different sized patients. Theoretically, the flexibility of the
silicone rubber Silicone rubber is an elastomer composed of silicone—itself a polymer—containing silicon together with carbon, hydrogen, and oxygen. Silicone rubbers are widely used in industry, and there are multiple formulations. Silicone rubbers ar ...
would allow some deformation under relatively low loads, and the artificial ligament would stiffen to maintain its shape under higher loads. Practically, this design never achieved its goal to mimic the property of a natural ligament. The mechanical performance of the artificial ligaments was inadequate for widespread clinical application. In the long term, performance loss, complications, and failure occurred. Material deterioration contributed to the ineffectiveness of early artificial ligaments. Issues would occur in the months and years following treatment. J.E. Paulos indicated in a report about
Gore-Tex Gore-Tex is W. L. Gore & Associates's trade name for waterproof, breathable fabric membrane. It was invented in 1969. Gore-Tex blocks liquid water while allowing water vapor to pass through and is designed to be a lightweight, waterproof fabri ...
usage in ACL reconstruction: "Early results of the
Gore-Tex Gore-Tex is W. L. Gore & Associates's trade name for waterproof, breathable fabric membrane. It was invented in 1969. Gore-Tex blocks liquid water while allowing water vapor to pass through and is designed to be a lightweight, waterproof fabri ...
prosthesis used for ACL reconstruction showed low rates of failure. Unfortunately, with extended follow-up, our rate of complications continues to increase. Mechanical failure, effusions, and infections continue to occur". At the time, the materials used in artificial ligaments could not sustain adequate mechanical performance. For many of these materials, their mechanical performance diminished in the long-term.


Current design

The primary usage of modern artificial ligaments is in
anterior cruciate ligament reconstruction Anterior cruciate ligament reconstruction (ACL reconstruction) is a surgical tissue graft replacement of the anterior cruciate ligament, located in the knee, to restore its function after an injury. The torn ligament can either be removed from ...
. Many artificial ligaments seek to mimic or exceed the performance of the native ACL. The mechanical performance of an artificial ligament can be characterized by abrasion resistance, withstanding flexural and rotational
fatigue Fatigue is a state of tiredness (which is not sleepiness), exhaustion or loss of energy. It is a signs and symptoms, symptom of any of various diseases; it is not a disease in itself. Fatigue (in the medical sense) is sometimes associated wit ...
, and preventing graft slippage or rupture. Biocompatibility is important to the performance of the artificial ligament in vivo. Biocompatibility is related to new tissue ingrowth, fibroblast migration,
osseointegration Osseointegration (from Latin " bony" and "to make whole") is the direct structural and functional connection between living bone and the surface of a load-bearing artificial implant ("load-bearing" as defined by Albrektsson et al. in 1981). ...
of bone, reduction of
inflammation Inflammation (from ) is part of the biological response of body tissues to harmful stimuli, such as pathogens, damaged cells, or irritants. The five cardinal signs are heat, pain, redness, swelling, and loss of function (Latin ''calor'', '' ...
, preventing scar tissue infiltration, and improving hydrophilicity. Tissue ingrowth and fibroblast migration have been shown to improve the mechanical strength of the artificial ligament, and osseointegration with the surrounding bone can reduce the likelihood of graft slippage. Many artificial ligaments are designed to minimize inflammation and scar tissue infiltration because they can hinder the mechanical strength and can cause graft rupture. Artificial ligament design strives to improve hydrophilicity because hydrophobicity can trigger the host's natural response to foreign bodies. The Ligament Advanced Reinforcement (LARS) is a leading artificial ligament in ACL repair surgery. They are made of
polyethylene terephthalate Polyethylene terephthalate (or poly(ethylene terephthalate), PET, PETE, or the obsolete PETP or PET-P), is the most common thermoplastic polymer resin of the polyester family and is used in synthetic fibre, fibres for clothing, packaging, conta ...
(PET). They consist of an intraosseous and an intra-articular portion. The intraosseous section consists of longitudinal fibers bounded by a knitted transverse structure. This knitted structure can help prevent deformation and abrasion. The intra-articular portion is made of longitudinal fibers pretwisted at a 90 degree angle. This section is designed to resist fatigue and promote tissue ingrowth. Leeds Keio ligaments consist of a
polyester Polyester is a category of polymers that contain one or two ester linkages in every repeat unit of their main chain. As a specific material, it most commonly refers to a type called polyethylene terephthalate (PET). Polyesters include some natura ...
mesh structure. It seeks to mimic the mechanical properties of the native ACL. The porous nature of the ligament can promote tissue ingrowth which has been shown to improve mechanical properties. The PGA Dacron artificial graft consists of 75% braided biodegradable
polyglycolic acid Polyglycolide or poly(glycolic acid) (PGA), also spelled as polyglycolic acid, is a biodegradable, thermoplastic polymer and the simplest linear, aliphatic polyester. It can be prepared starting from glycolic acid by means of polycondensation or ...
and 25% permanent
Dacron Polyethylene terephthalate (or poly(ethylene terephthalate), PET, PETE, or the obsolete PETP or PET-P), is the most common thermoplastic polymer resin of the polyester family and is used in fibres for clothing, containers for liquids and foods ...
thread. The Kennedy LAD artificial ligament is made of
polypropylene Polypropylene (PP), also known as polypropene, is a thermoplastic polymer used in a wide variety of applications. It is produced via chain-growth polymerization from the monomer Propene, propylene. Polypropylene belongs to the group of polyolefin ...
ribbons. It is designed to promote tissue ingrowth and the progressive transfer of load onto the new ligament. The native ACL of a human has a
tensile strength Ultimate tensile strength (also called UTS, tensile strength, TS, ultimate strength or F_\text in notation) is the maximum stress that a material can withstand while being stretched or pulled before breaking. In brittle materials, the ultimate ...
on the order of kilonewtons, and an elongation at failure of approximately 10%. The mechanical properties of the native ACL vary throughout the human population. The strength of a child's ACL tends to be greater than that of an adult. PGA Dacron artificial ligaments have an ultimate tensile strength near 3500 N and a mean ultimate elongation of approximately 20%. Kennedy LAD ligaments have a tensile strength at failure of approximately 1500 N and an approximate stiffness of 50 N/mm. Leeds-Keio artificial ligaments have an ultimate tensile strength near 2000 N and a stiffness around 250 N/mm after tissue ingrowth. LARS artificial ligaments have varying mechanical properties depending on the amount of fibers used. A higher gauged ligament will have a greater tensile strength. During testing, a 60 gauge LARS ligament exhibited an ultimate tensile strength of 2500 N while a 120 gauge ligament exhibited a tensile strength of 5600 N. The ingrown tissue has been shown to improve viscoelastic properties and reduce friction. Coatings have been added to artificial ligaments to improve their biocompatibility. 58S bioglass and
hydroxyapatite Hydroxyapatite (International Mineralogical Association, IMA name: hydroxylapatite) (Hap, HAp, or HA) is a naturally occurring mineral form of calcium apatite with the Chemical formula, formula , often written to denote that the Crystal struc ...
coatings have been shown to improve osseointegration and cellular activity in vitro and in animal studies when deposited onto PET ligaments using the soaking method. Hydroxypropyl cellulose surface treatments have been shown to improve osseointegration for PET ligaments in animal studies. Uncoated PET is hydrophobic, so coatings are designed to improve hydrophilicity.
Hyaluronic acid Hyaluronic acid (; abbreviated HA; conjugate base hyaluronate), also called hyaluronan, is an anionic, nonsulfated glycosaminoglycan distributed widely throughout connective, epithelial, and neural tissues. It is unique among glycosaminog ...
coatings can reduce hydrophobicity and have been shown to reduce scar tissue formation and inflammation in vivo. Hyaluronic acid and
chitosan Chitosan is a linear polysaccharide composed of randomly distributed β-(1→4)-linked D-glucosamine (deacetylated unit) and ''N''-acetyl-D-glucosamine (acetylated unit). It is made by treating the chitin shells of shrimp and other crusta ...
composite coatings can be deposited onto artificial ligament surfaces by the layer-by-layer technique, and they have been shown to enhance new bone formation at the ligament interface in mice. The chitosan is used to reduce hydrophobicity and improve osseointegration and mineral deposition, while the hyaluronic acid promotes cell differentiation and growth.
Poly(sodium styrene sulfonate) Polystyrene sulfonates are a group of medications used to treat high blood potassium. Effects generally take hours to days. They are also used to remove potassium, calcium, and sodium from solutions in technical applications. Common side effect ...
coatings have been shown in animal studies to improve knee functionality and mimicry of the native ACL.


Clinical application

The
anterior cruciate ligament The anterior cruciate ligament (ACL) is one of a pair of cruciate ligaments (the other being the posterior cruciate ligament) in the human knee. The two ligaments are called "cruciform" ligaments, as they are arranged in a crossed formation. In ...
(ACL) is a frequently injured human body structure that may cause secondary damages to the knees, such as meniscal tears and articular cartilage degeneration, without medical treatment.
ACL reconstruction Anterior cruciate ligament reconstruction (ACL reconstruction) is a surgical tissue graft replacement of the anterior cruciate ligament, located in the knee, to restore its function after an injury. The torn ligament can either be removed from ...
is a commonly practiced technique for ACL injury, conducted on 30% of patients, which manages to restore stability to the knee structure. Traditional ACL reconstructions uses autografts or allografts which demand a long rehabilitation time and in most cases, develop donor morbidity in the long term. The early interests in artificial ligaments led to the implementation of non-human tissue, such as Proplast ligaments made of
Teflon Polytetrafluoroethylene (PTFE) is a synthetic fluoropolymer of tetrafluoroethylene, and has numerous applications because it is chemically inert. The commonly known brand name of PTFE-based composition is Teflon by Chemours, a spin-off from ...
and carbon fibers and Polyflex made of
polypropylene Polypropylene (PP), also known as polypropene, is a thermoplastic polymer used in a wide variety of applications. It is produced via chain-growth polymerization from the monomer Propene, propylene. Polypropylene belongs to the group of polyolefin ...
. The results demonstrated poor resistance to torsion forces. Approved by FDA in 1986 and adopted in clinics later,
Gore-Tex Gore-Tex is W. L. Gore & Associates's trade name for waterproof, breathable fabric membrane. It was invented in 1969. Gore-Tex blocks liquid water while allowing water vapor to pass through and is designed to be a lightweight, waterproof fabri ...
cruciate ligament prosthesis demonstrated low rates of mechanical failure but high rates of rupture in follow-up. Gore-Tex was then abandoned in ACL surgery and Leeds-Keio (LK) ligament was then adopted. In the later long term follow-up research, LK ligament demonstrated promising performance at first but still showed low stability rates in 2 years and increased degenerative changes compared with their opposite joint in one decade. In the 21st century, the Ligament Advanced Reinforcement (LARS) ligament became the most popular artificial ligament on the market. LARS ligaments not only provide satisfactory outcomes initially but also do not perform differently in at least 2 years. LARS ligaments demonstrate higher stability and lower morbidity rate compared to autograft in short-term research and in a 9-year study, LARS ligament showed a 100% survival rate. Synthetic ACL grafts always develop creep, fatigue and failure so the demand for synthetic grafts with sufficient supply, satisfactory mechanical properties, and low morbidity rate is essentially high. Currently, the LARS ligament is the most comparable to both autografts and other synthetic grafts. Complications that commonly occur in the artificial ligaments after the first ten years are breakage, wear debris, synovitis, recurrent instability, osteolysis and chronic effusions. Complications do not commonly surface right after the surgery or after a relatively short term, and in a few cases, start to show up after the first ten years. Follow-up research is required to study the performance of certain synthetic materials for artificial ligament and to monitor the health of patients. Rupture rates are usually recorded in 2 to 5 years.


Tissue engineering

While the future of artificial ligaments is unknown, leading researchers in
tissue engineering Tissue engineering is a biomedical engineering discipline that uses a combination of cells, engineering, materials methods, and suitable biochemical and physicochemical factors to restore, maintain, improve, or replace different types of biolo ...
aim to regenerate and repair the ligament to restore normal function.  ACL tissue engineering will be based on the healing of the
medial collateral ligament The medial collateral ligament (MCL), also called the superficial medial collateral ligament (sMCL) or tibial collateral ligament (TCL), is one of the major ligaments of the knee. It is on the medial (inner) side of the knee joint and occurs in ...
(MCL), since the ACL does not heal naturally.  A seed cell will be used in tissue engineering for the repair of ACL ligaments. The seed cell must have qualifications such as: easily available, potent to proliferate, and efficient in elaborating a mature extracellular matrix.  Stem cells such as bone marrow-derived
mesenchymal stem cell Mesenchymal stem cells (MSCs), also known as mesenchymal stromal cells or medicinal signaling cells, are multipotent stromal cells that can Cellular differentiation, differentiate into a variety of cell types, including osteoblasts (bone cells), ...
s, adipose-derived stem cells, perivascular stem cells, and human foreskin
fibroblast A fibroblast is a type of cell (biology), biological cell typically with a spindle shape that synthesizes the extracellular matrix and collagen, produces the structural framework (Stroma (tissue), stroma) for animal Tissue (biology), tissues, and ...
s are commonly used in tissue engineering.


References

{{Reflist Ligaments Orthopedics