Aqueous Normal Phase Chromatography
   HOME

TheInfoList



OR:

Aqueous normal-phase chromatography (ANP) is a chromatographic technique that involves the
mobile phase In analytical and organic chemistry, elution is the process of extracting one material from another by washing with a solvent: washing of loaded ion-exchange resins to remove captured ions, or eluting proteins or other biopolymers from an el ...
compositions and polarities between
reversed-phase chromatography Reversed-phase liquid chromatography (RP-LC) is a mode of liquid chromatography in which non-polar Stationary phase (chemistry), stationary phase and polar mobile phases are used for the separation of organic compounds. The vast majority of separat ...
(RP) and normal-phase chromatography (NP), while the stationary phases are polar.


Principle

In normal-phase chromatography, the stationary phase is
polar Polar may refer to: Geography * Geographical pole, either of the two points on Earth where its axis of rotation intersects its surface ** Polar climate, the climate common in polar regions ** Polar regions of Earth, locations within the polar circ ...
and the mobile phase is
nonpolar In chemistry, polarity is a separation of electric charge leading to a molecule or its chemical groups having an electric dipole moment, with a negatively charged end and a positively charged end. Polar molecules must contain one or more polar ...
. In reversed phase the opposite is true; the stationary phase is nonpolar and the mobile phase is polar. Typical stationary phases for normal-phase chromatography are silica or organic moieties with
cyano In chemistry, cyanide () is an inorganic chemical compound that contains a functional group. This group, known as the cyano group, consists of a carbon atom triple-bonded to a nitrogen atom. Ionic cyanides contain the cyanide anion . This a ...
and
amino In chemistry, amines (, ) are organic compounds that contain carbon-nitrogen bonds. Amines are formed when one or more hydrogen atoms in ammonia are replaced by alkyl or aryl groups. The nitrogen atom in an amine possesses a lone pair of elec ...
functional groups. For reversed phase,
alkyl In organic chemistry, an alkyl group is an alkane missing one hydrogen. The term ''alkyl'' is intentionally unspecific to include many possible substitutions. An acyclic alkyl has the general formula of . A cycloalkyl group is derived from a cy ...
hydrocarbons are the preferred stationary phase; octadecyl (C18) is the most common stationary phase, but octyl (C8) and butyl (C4) are also used in some applications. The designations for the reversed phase materials refer to the length of the hydrocarbon chain. In normal-phase chromatography, the least polar compounds elute first and the most polar compounds elute last. The mobile phase consists of a nonpolar solvent such as
hexane Hexane () or ''n''-hexane is an organic compound, a straight-chain alkane with six carbon atoms and the molecular formula C6H14. Hexane is a colorless liquid, odorless when pure, and with a boiling point of approximately . It is widely used as ...
or
heptane Heptane or ''n''-heptane is the straight-chain alkane with the chemical formula H3C(CH2)5CH3 or C7H16. When used as a test fuel component in anti-knock test engines, a 100% heptane fuel is the zero point of the octane rating scale (the 100 poi ...
mixed with a slightly more polar solvent such as
isopropanol Isopropyl alcohol (IUPAC name propan-2-ol and also called isopropanol or 2-propanol) is a colorless, flammable, organic compound with a pungent alcoholic odor. Isopropyl alcohol, an organic polar molecule, is miscible in water, ethanol, an ...
,
ethyl acetate Ethyl acetate commonly abbreviated EtOAc, ETAC or EA) is the organic compound with the formula , simplified to . This flammable, colorless liquid has a characteristic sweet smell (similar to pear drops) and is used in glues, nail polish removers, ...
or
chloroform Chloroform, or trichloromethane (often abbreviated as TCM), is an organochloride with the formula and a common solvent. It is a volatile, colorless, sweet-smelling, dense liquid produced on a large scale as a precursor to refrigerants and po ...
. Retention decreases as the amount of polar solvent in the mobile phase increases. In reversed phase chromatography, the most polar compounds
elute In analytical and organic chemistry, elution is the process of extracting one material from another by washing with a solvent: washing of loaded ion-exchange resins to remove captured ions, or eluting proteins or other biopolymers from an elec ...
first with the more nonpolar compounds eluting later. The mobile phase is generally a mixture of water and miscible polarity-modifying organic solvent, such as
methanol Methanol (also called methyl alcohol and wood spirit, amongst other names) is an organic chemical compound and the simplest aliphatic Alcohol (chemistry), alcohol, with the chemical formula (a methyl group linked to a hydroxyl group, often ab ...
,
acetonitrile Acetonitrile, often abbreviated MeCN (methyl cyanide), is the chemical compound with the formula and structure . This colourless liquid is the simplest organic nitrile (hydrogen cyanide is a simpler nitrile, but the cyanide anion is not class ...
or
THF Tetrahydrofuran (THF), or oxolane, is an organic compound with the formula (CH2)4O. The compound is classified as heterocyclic compound, specifically a cyclic ether. It is a colorless, water-miscible organic liquid with low viscosity. It is ma ...
. Retention increases as the fraction of the polar solvent (water) in the mobile phase is higher. Normal phase chromatography retains molecules via an adsorptive mechanism, and is used for the analysis of solutes readily soluble in organic solvents. Separation is achieved based on the polarity differences among functional groups such as amines, acids, metal complexes, etc. as well as their steric properties, while in reversed-phase chromatography, a partition mechanism typically occurs for the separation by non-polar differences. In the aqueous normal-phase chromatography the support is based on a silica with "
hydride In chemistry, a hydride is formally the anion of hydrogen (H−), a hydrogen ion with two electrons. In modern usage, this is typically only used for ionic bonds, but it is sometimes (and has been more frequently in the past) applied to all che ...
surface" which is distinguishable from the other silica support materials, used either in normal phase, reversed phase, or
hydrophilic interaction chromatography Hydrophilic interaction chromatography (or hydrophilic interaction liquid chromatography, HILIC) is a variant of normal phase liquid chromatography that partly overlaps with other chromatographic applications such as ion chromatography and re ...
. Most silica materials used for chromatography have a surface composed primarily of
silanol A silanol is a functional group in silicon chemistry with the connectivity Si–O–H. It is related to the hydroxy functional group (C–O–H) found in all alcohols. Silanols are often invoked as intermediates in organosilicon c ...
s (-Si-OH). In a "hydride surface" the terminal groups are primarily -Si-H. The hydride surface can also be functionalized with
carboxylic acids In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group () attached to an Substituent, R-group. The general formula of a carboxylic acid is often written as or , sometimes as with R referring to an organyl ...
and long-chain alkyl groups. Mobile phases for ANPC are based on organic solvents as bulk solvents (such as methanol or acetonitrile) with a small amount of water as a modifier of polarity; thus, the mobile phase is both "aqueous" (water is present) and "normal phase type" (less polar than the stationary phase). Thus, polar solutes (such as acids and amines) are more strongly retained, with the ability to affect the retention, which decreases as the amount of water in the mobile phase increases. Typically the mobile phases are rich with organic solvents, with amount of the nonpolar solvent in the mobile phase at least 60% or greater to reach minimal required retention. A true ANP stationary phase will be able to function in both the reversed phase and normal phase modes with only the amount of water in the eluent varying. Thus a continuum of solvents can be used from 100% aqueous to pure organic. ANP retention has been demonstrated for a variety of polar compounds on the hydride based stationary phases. Recent investigations have demonstrated that silica hydride materials have a very thin water layer (about 0.5 monolayer) in comparison to HILIC phases that can have from 6–8 monolayers. In addition the substantial negative charge on the surface of hydride phases is the result of hydroxide ion adsorption from the solvent rather than silanols.


Features

An interesting feature of these phases is that both polar and nonpolar compounds can be retained over some range of mobile phase composition (organic/aqueous). The retention mechanism of polar compounds has recently been shown to be the result of the formation of a hydroxide layer on the surface of the silica hydride. Thus positively charged analytes are attracted to the negatively charged surface and other polar analytes are likely to be retained through displacement of hydroxide or other charged species on the surface. This property distinguishes it from a pure HILIC (hydrophilic interaction chromatography) columns where separation by polar differences is obtained through partitioning into a water-rich layer on the surface, or a pure RP stationary phase on which separation by nonpolar differences in solutes is obtained with very limited secondary mechanisms operating. Another important feature of the hydride-based phases is that for many analyses it is usually not necessary to use a high pH mobile phase to analyze polar compounds such as bases. The aqueous component of the mobile phase usually contains from 0.1 to 0.5% formic or acetic acid, which is compatible with detector techniques that include mass spectral analysis.


References

# # # # C. Kulsing, Y. Nolvachai, P.J. Marriott, R.I. Boysen, M.T. Matyska, J.J. Pesek, M.T.W. Hearn, J. Phys. Chem B, 119 (2015) 3063-3069. #{{Note, Soukup_2013 J. Soukup, P. Janas, P. Jandera, J. Chromatogr. A, 1286 (2013) 111-118 Chromatography