
In
fluid mechanics
Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasma (physics), plasmas) and the forces on them.
Originally applied to water (hydromechanics), it found applications in a wide range of discipl ...
, apparent viscosity (sometimes denoted )
is the
shear stress
Shear stress (often denoted by , Greek alphabet, Greek: tau) is the component of stress (physics), stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross secti ...
applied to a
fluid
In physics, a fluid is a liquid, gas, or other material that may continuously motion, move and Deformation (physics), deform (''flow'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are M ...
divided by the
shear rate
In physics, mechanics and other areas of science, shear rate is the rate at which a progressive shear strain is applied to some material, causing shearing to the material. Shear rate is a measure of how the velocity changes with distance.
Simple ...
:
:
For a
Newtonian fluid
A Newtonian fluid is a fluid in which the viscous stresses arising from its flow are at every point linearly correlated to the local strain rate — the rate of change of its deformation over time. Stresses are proportional to the rate of cha ...
, the apparent viscosity is constant, and equal to the Newtonian
viscosity
Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e ...
of the fluid, but for
non-Newtonian fluids, the apparent viscosity depends on the shear rate. Apparent viscosity has the
SI derived unit
SI derived units are units of measurement derived from the
seven SI base units specified by the International System of Units (SI). They can be expressed as a product (or ratio) of one or more of the base units, possibly scaled by an appropriat ...
Pa·s (
Pascal-
second
The second (symbol: s) is a unit of time derived from the division of the day first into 24 hours, then to 60 minutes, and finally to 60 seconds each (24 × 60 × 60 = 86400). The current and formal definition in the International System of U ...
), but the
centipoise
The poise (symbol P; ) is the unit of dynamic viscosity (absolute viscosity) in the centimetre–gram–second system of units (CGS). It is named after Jean Léonard Marie Poiseuille (see Hagen–Poiseuille equation). The centipoise (1 cP = ...
is frequently used in practice: (1 mPa·s = 1 cP).
Application
A single viscosity measurement at a constant speed in a typical
viscometer
A viscometer (also called viscosimeter) is an instrument used to measure the viscosity of a fluid. For liquids with viscosities which vary with flow conditions, an instrument called a rheometer is used. Thus, a rheometer can be considered as a sp ...
is a measurement of the instrument viscosity of a fluid (not the apparent viscosity). In the case of non-Newtonian fluids, measurement of apparent viscosity without knowledge of the shear rate is of limited value: the measurement cannot be compared to other measurements if the speed and geometry of the two instruments is not identical. An apparent viscosity that is reported without the shear rate or information about the instrument and settings (e.g. speed and spindle type for a rotational viscometer) is meaningless.
Multiple measurements of apparent viscosity at different, well-defined shear rates, can give useful information about the non-Newtonian behaviour of a fluid, and allow it to be modeled.
Power-law fluids
In many
non-Newtonian fluids, the shear stress due to viscosity,
, can be modeled by
:
where
* ''k'' is the consistency index
* ''n'' is the
flow behavior index
* ''du/dy'' is the shear rate, with velocity ''u'' and position ''y''
These fluids are called
power-law fluid
In continuum mechanics, a power-law fluid, or the Ostwald–de Waele relationship, is a type of generalized Newtonian fluid. This mathematical relationship is useful because of its simplicity, but only approximately describes the behaviour of a re ...
s.
To ensure that
has the same sign as ''du/dy'', this is often written as
:
where the term
:
gives the apparent viscosity.
See also
*
Fluid Dynamics
In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases. It has several subdisciplines, including (the study of air and other gases in motion ...
*
Rheology
Rheology (; ) is the study of the flow of matter, primarily in a fluid (liquid or gas) state but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an applie ...
*
Viscosity
Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e ...
References
{{DEFAULTSORT:Apparent Viscosity
Fluid dynamics
Petroleum engineering
Tribology