A multi-anvil press, or anvil press is a type of device related to a
machine press that is used to create extraordinarily high pressures within a small volume.
Anvil presses are used in
materials science and
geology
Geology () is a branch of natural science concerned with Earth and other astronomical objects, the features or rocks of which it is composed, and the processes by which they change over time. Modern geology significantly overlaps all other Ea ...
for the synthesis and study the different
phases of materials under extreme pressure, as well as for the industrial production of valuable minerals, especially
synthetic diamond
Lab-grown diamond (LGD; also called laboratory-grown, laboratory-created, man-made, artisan-created, artificial, synthetic, or cultured diamond) is diamond that is produced in a controlled technological process (in contrast to naturally formed ...
s, as they mimic the pressures and temperatures that exist deep in the Earth. These instruments allow the simultaneous compression and heating of millimeter size solid phase samples such as
rocks
In geology, rock (or stone) is any naturally occurring solid mass or aggregate of minerals or mineraloid matter. It is categorized by the minerals included, its chemical composition, and the way in which it is formed. Rocks form the Earth's ...
,
mineral
In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed. ...
s,
ceramic
A ceramic is any of the various hard, brittle, heat-resistant and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcelai ...
s,
glass
Glass is a non-Crystallinity, crystalline, often transparency and translucency, transparent, amorphous solid that has widespread practical, technological, and decorative use in, for example, window panes, tableware, and optics. Glass is most ...
es,
composite material
A composite material (also called a composition material or shortened to composite, which is the common name) is a material which is produced from two or more constituent materials. These constituent materials have notably dissimilar chemical or ...
s, or
metal
A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typi ...
s and are capable of reaching pressures above 25
GPa (around 250,000 atmospheres) and temperatures exceeding 2,500 °C. This allows mineral physicists and petrologists studying the Earth's interior to experimentally reproduce the conditions found throughout the
lithosphere and
upper mantle, a region that spans the near surface to a depth of 700 km. In addition to pressing on the sample, the experiment passes an electric current through a furnace within the assembly to generate temperatures up to 2,200 °C. Although
Diamond anvil cell
A diamond anvil cell (DAC) is a high-pressure device used in geology, engineering, and materials science experiments. It enables the compression of a small (sub-millimeter-sized) piece of material to extreme pressures, typically up to around ...
s and
light-gas guns can access even higher pressures, the multi-anvil apparatus can accommodate much larger samples, which simplifies sample preparation and improves the precision of measurements and the stability of the experimental parameters.
The multi-anvil press is a relatively rare research tool.
Lawrence Livermore National Laboratory
Lawrence Livermore National Laboratory (LLNL) is a federal research facility in Livermore, California, United States. The lab was originally established as the University of California Radiation Laboratory, Livermore Branch in 1952 in response ...
's two presses have been used for a variety of material property studies, including diffusion and deformation of ceramics and metals,
deep-focus earthquake, and the high-pressure stability of mineral phases.
History
The 6-8 multi-anvil apparatus was introduced by Kawai and Endo using a split steel sphere suspended in pressurized oil, later modified to use the hydraulic ram. In 1990, Walker et al.
simplified the first compression stage by introducing the removable hatbox design, allowing ordinary
machine presses to be converted into multi-anvil systems. A variety of assembly designs have been introduced and standardized including the Walker castable, and the COMPRES assemblies. Recent advances have focused on in-situ measurements, and standardizing materials and calibrations.
Basic design
A typical Kawai cell 8–6 multi-anvil apparatus uses air pumps to pressurize oil, which drives a vertical hydraulic ram to compress a cylindrical cavity known as a hatbox. This cavity is filled with six steel anvils, three facing up and three facing down, that converge on a set of eight
tungsten carbide
Tungsten carbide (chemical formula: WC) is a chemical compound (specifically, a carbide) containing equal parts of tungsten and carbon atoms. In its most basic form, tungsten carbide is a fine gray powder, but it can be pressed and formed int ...
cubes. The interior corners of these cubes truncated to fit an
octahedral assembly. These octahedra range from 8
mm to 25 mm on edge and are typically composed of
magnesium oxide or another material that deforms ductilely over the range of experimental conditions, to make sure the experiment is under hydrostatic stress. As this assembly is compressed, it extrudes out between the cubes, forming a gasket. A cylinder is drilled out between two opposite faces to accommodate the experiment. Experiments that require heating are surrounded by a cylindrical graphite or
lanthanum chromite cylinder furnace, which can produce considerable heat by electrical resistance. However, the graphite furnace can be troublesome at higher pressures due to its tendency to transform into diamond. The DIA multi-anvil is the main alternative to the Kawai cell: it uses six anvils to compress a cubic sample.
Theory
In principle, the multi-anvil press is similar in design to a machine press except that it uses force magnification to amplify pressure by reducing the area over which force is applied:
:
This is analogous to the mechanical advantage utilized by a
lever, except the force is applied linearly, instead of angularly. For example, a typical multi-anvil could apply 9,806,650
N (equivalent to a load of 1000
t) onto a 10 mm octahedral assembly, which has a surface area of 346.41 mm2, to produce a pressure of 28.31 GPa inside the sample, while the pressure in the hydraulic ram is a mere 0.3 GPa. Therefore, using smaller assemblies can increase the pressure in the sample. The load that can be applied is limited by the compressive yield strength of the tungsten carbide cubes, especially for heated experiments. Even higher pressures, up to 90 GPa, have been achieved by using 14 mm sintered diamond cubes instead of tungsten carbide.
Measurements in the Multi-Anvil
Most sample analysis is conducted after the experiment is quenched and removed from the multi-anvil. However, it is also possible to perform measurements in-situ. Circuits, including
thermocouples or pressure variable resistors, can be built into the assembly to accurately measure temperature and pressure.
Acoustic interferometry can be used to measure
seismic velocities through a material or to infer density of materials.
Resistivity can be measured by complex impedance spectroscopy. Magnetic properties can be measured using amplified
nuclear magnetic resonance
Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a ...
in specially configured multi-anvils.
The DIA multi-anvil design often includes diamond or sapphire windows built into the tungsten anvils to allow
x-ray
X-rays (or rarely, ''X-radiation'') are a form of high-energy electromagnetic radiation. In many languages, it is referred to as Röntgen radiation, after the German scientist Wilhelm Conrad Röntgen, who discovered it in 1895 and named it ' ...
s or
neutrons to penetrate into the sample. This type of device gives researchers at synchrotron and neutron spallation sources the capacity to perform diffraction experiments to measure the structure of samples under extreme conditions. This is essential for observing unquenchable phases of matter because they are kinetically and thermodynamically unstable at low temperatures and pressure. Viscosity and density of high-pressure melts can be measured in-situ using the sink float method and neutron tomography. In this method a sample is implanted with objects, such platinum spheres, that have different density and neutron scattering properties compared to the material surrounding them, and the path of the object is tracked as it sinks, or floats, through the melt. Two objects with contrasting buoyancy can be used simultaneously to calculate the density.
Applications
Pressure, like temperature, is a basic
thermodynamic parameter that influences the molecular structure, and thus the
electrical,
magnetic
Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particles ...
,
thermal,
optical
Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultrav ...
and
mechanical properties of materials. Devices like the multi-anvil apparatus allow us to observe the effect of high pressure on material structure and properties.
Multi-anvil presses are occasionally used in industry to produce minerals of exceptional purity, size and quality, especially high-pressure high-temperature (HPHT) synthetic diamonds and c-Boron-Nitride. However, multi-anvils are high cost devices, and are very adaptable, so they are more often used as scientific instruments. Multi-anvils have three main scientific uses: 1) to synthesize novel high-pressure material; 2) to change the phases of a material; 3) to examine the properties of materials at high pressures. In materials science this includes the synthesis of novel or useful materials with potential mechanical or electronic applications, such as high-pressure super conductors or ultra-hard substances. Geologists are primarily concerned with reproducing the conditions and materials found in the deep earth, to study geological processes that cannot be directly observed. Minerals or rocks are synthesized to find what conditions are responsible for different mineral phases and textures. Geoscientists also use multi-anvils to measure the
kinetics of reactions,
density
Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematicall ...
,
viscosity
The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water.
Viscosity quantifies the inte ...
,
compressibility
In thermodynamics and fluid mechanics, the compressibility (also known as the coefficient of compressibility or, if the temperature is held constant, the isothermal compressibility) is a measure of the instantaneous relative volume change of a ...
,
diffusivity and
thermal conductivity
The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by k, \lambda, or \kappa.
Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal ...
of rock under extreme conditions.
External links
The 1000-ton multi-anvil press at Caltech500 ton press at Oxford*
References
{{reflist
*
Metal forming
Machine tools