Antiporter Alone
   HOME

TheInfoList



OR:

An antiporter (also called exchanger or counter-transporter) is an
integral membrane protein An integral, or intrinsic, membrane protein (IMP) is a type of membrane protein that is permanently attached to the biological membrane. All transmembrane proteins can be classified as IMPs, but not all IMPs are transmembrane proteins. IMPs comp ...
that uses
secondary active transport In cellular biology, active transport is the movement of molecules or ions across a cell membrane from a region of lower concentration to a region of higher concentration—against the concentration gradient. Active transport requires cellular ...
to move two or more molecules in opposite directions across a
phospholipid membrane The lipid bilayer (or phospholipid bilayer) is a thin polar membrane made of two layers of lipid molecules. These membranes form a continuous barrier around all cells. The cell membranes of almost all organisms and many viruses are made of a l ...
. It is a type of
cotransporter Cotransporters are a subcategory of membrane transport proteins (transporters) that couple the favorable movement of one molecule with its concentration gradient and unfavorable movement of another molecule against its concentration gradient. They ...
, which means that uses the energetically favorable movement of one molecule down its
electrochemical gradient An electrochemical gradient is a gradient of electrochemical potential, usually for an ion that can move across a membrane. The gradient consists of two parts: * The chemical gradient, or difference in Concentration, solute concentration across ...
to power the energetically unfavorable movement of another molecule up its electrochemical gradient. This is in contrast to
symporter A symporter is an integral membrane protein that is involved in the transport of two (or more) different molecules across the cell membrane in the same direction. The symporter works in the plasma membrane and molecules are transported across th ...
s, which are another type of cotransporter that moves two or more ions in the same direction, and
primary active transport In cellular biology, active transport is the movement of molecules or ions across a cell membrane from a region of lower concentration to a region of higher concentration—against the concentration gradient. Active transport requires cellular ...
, which is directly powered by ATP. Transport may involve one or more of each type of solute. For example, the Na+/Ca2+ exchanger, found in the plasma membrane of many cells, moves three sodium ions in one direction, and one calcium ion in the other. As with sodium in this example, antiporters rely on an established gradient that makes entry of one ion energetically favorable to force the unfavorable movement of a second molecule in the opposite direction. Through their diverse functions, antiporters are involved in various important physiological processes, such as regulation of the strength of cardiac muscle contraction, transport of carbon dioxide by
erythrocytes Red blood cells (RBCs), referred to as erythrocytes (, with -''cyte'' translated as 'cell' in modern usage) in academia and medical publishing, also known as red cells, erythroid cells, and rarely haematids, are the most common type of blood cel ...
, regulation of cytosolic pH, and accumulation of sucrose in plant
vacuole A vacuole () is a membrane-bound organelle which is present in Plant cell, plant and Fungus, fungal Cell (biology), cells and some protist, animal, and bacterial cells. Vacuoles are essentially enclosed compartments which are filled with water ...
s.


Background

Cotransporter Cotransporters are a subcategory of membrane transport proteins (transporters) that couple the favorable movement of one molecule with its concentration gradient and unfavorable movement of another molecule against its concentration gradient. They ...
s are found in all organisms and fall under the broader category of
transport protein A transport protein (variously referred to as a transmembrane pump, transporter, escort protein, acid transport protein, cation transport protein, or anion transport protein) is a protein that serves the function of moving other materials within ...
s, a diverse group of transmembrane proteins that includes uniporters, symporters, and antiporters. Each of them are responsible for providing a means of movement for water-soluble molecules that otherwise would not be able to pass through lipid-based plasma membrane. The simplest of these are the
uniporters Facilitated diffusion (also known as facilitated transport or passive-mediated transport) is the process of spontaneous passive transport (as opposed to active transport) of molecules or ions across a biological membrane via specific transmembra ...
, which facilitate the movement of one type of molecule in the direction that follows its
concentration gradient Fick's laws of diffusion describe diffusion and were first posited by Adolf Fick in 1855 on the basis of largely experimental results. They can be used to solve for the diffusion coefficient, . Fick's first law can be used to derive his second ...
. In mammals, they are most commonly responsible for bringing glucose and amino acids into cells. Symporters and antiporters are more complex because they move more than one ion and the movement of one of those ions is in an energetically unfavorable direction. As multiple molecules are involved, multiple binding processes must occur as the transporter undergoes a cycle of
conformational change In biochemistry, a conformational change is a change in the shape of a macromolecule, often induced by environmental factors. A macromolecule is usually flexible and dynamic. Its shape can change in response to changes in its environment or othe ...
s to move them from one side of the membrane to the other. The mechanism used by these transporters limits their functioning to moving only a few molecules at a time. As a result, symporters and antiporters are characterized by a slower transport speed, moving between 102 and 104 molecules per second. Compare this to
ion channels Ion channels are pore-forming membrane proteins that allow ions to pass through the channel pore. Their functions include establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of ...
that provide a means for facilitated diffusion to occur and allow between 107 and 108 ions pass through the plasma membrane per second. Though ATP-powered pumps also move molecules in an energetically unfavorable direction and undergo conformational changes to do so, they fall under a different category of membrane proteins because they couple the energy derived from
ATP hydrolysis ATP hydrolysis is the catabolic reaction process by which chemical energy that has been stored in the high-energy phosphoanhydride bonds in adenosine triphosphate (ATP) is released after splitting these bonds, for example in muscles, by produ ...
to transport their respective ions. These ion pumps are very selective, consisting of a double gating system where at least one of the gates is always shut. The ion is allowed to enter from one side of the membrane while one of the gates is open, after which it will shut. Only then will the second gate open to allow the ion to leave on the membrane's opposite side. The time between the alternating gate opening is referred to as the occluded state, where the ions are bound and both gates are shut. These gating reactions limit the speed of these pumps, causing them to function even slower than transport proteins, moving between 100 and 103 ions per second.


Structure and function

To function in active transport, a membrane protein must meet certain requirements. The first of these is that the interior of the protein must contain a cavity that is able to contain its corresponding molecule or ion. Next, the protein must be able to assume at least two different conformations, one with its cavity open to the
extracellular space Extracellular space refers to the part of a multicellular organism outside the cells, usually taken to be outside the plasma membranes, and occupied by fluid. This is distinguished from intracellular space, which is inside the cells. The composit ...
and the other with its cavity open to the
cytosol The cytosol, also known as cytoplasmic matrix or groundplasm, is one of the liquids found inside cells ( intracellular fluid (ICF)). It is separated into compartments by membranes. For example, the mitochondrial matrix separates the mitochondri ...
. This is crucial for the movement of molecules from one side of the membrane to the other. Finally, the cavity of the protein must contain binding sites for its
ligands In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's ...
, and these binding sites must have a different affinity for the ligand in each of the protein's conformations. Without this, the ligand will not be able to bind to the transporter on one side of the plasma membrane and be released from it on the other side. As transporters, antiporters have all of these features. Because antiporters are highly diverse, their structure can vary widely depending upon the type of molecules being transported and their location in the cell. However, there are some common features that all antiporters share. One of these is multiple
transmembrane region Cell surface receptors (membrane receptors, transmembrane receptors) are receptors that are embedded in the plasma membrane of cells. They act in cell signaling by receiving (binding to) extracellular molecules. They are specialized integral me ...
s that span the
lipid bilayer The lipid bilayer (or phospholipid bilayer) is a thin polar membrane made of two layers of lipid molecules. These membranes form a continuous barrier around all cell (biology), cells. The cell membranes of almost all organisms and many viruses a ...
of the plasma membrane and form a channel through which
hydrophilic A hydrophile is a molecule or other molecular entity that is attracted to water molecules and tends to be dissolved by water.Liddell, H.G. & Scott, R. (1940). ''A Greek-English Lexicon'' Oxford: Clarendon Press. In contrast, hydrophobes are n ...
molecules can pass. These transmembrane regions are typically structured from
alpha helices An alpha helix (or α-helix) is a sequence of amino acids in a protein that are twisted into a coil (a helix). The alpha helix is the most common structural arrangement in the secondary structure of proteins. It is also the most extreme type of l ...
and are connected by loops in both the extracellular space and cytosol. These loops are what contain the binding sites for the molecules associated with the antiporter. These features of antiporters allow them to carry out their function in maintaining cellular
homeostasis In biology, homeostasis (British English, British also homoeostasis; ) is the state of steady internal physics, physical and chemistry, chemical conditions maintained by organism, living systems. This is the condition of optimal functioning fo ...
. They provide a space where a hydrophilic molecule can pass through the hydrophobic lipid bilayer, allowing them to bypass the hydrophobic interactions of the plasma membrane. This enables the efficient movement of molecules needed for the environment of the cell, such as in the acidification of organelles. The varying affinity of the antiporter for each ion or molecule on either side of the plasma membrane allows it to bind to and release its ligands on the appropriate side of the membrane according to the electrochemical gradient of the ion being harnessed for its energetically favorable concentration.


Mechanism

The mechanism of antiporter transport involves several key steps and a series of conformational changes that are dictated by the structural element described above: # The
substrate Substrate may refer to: Physical layers *Substrate (biology), the natural environment in which an organism lives, or the surface or medium on which an organism grows or is attached ** Substrate (aquatic environment), the earthy material that exi ...
binds to its specific
binding site In biochemistry and molecular biology, a binding site is a region on a macromolecule such as a protein that binds to another molecule with specificity. The binding partner of the macromolecule is often referred to as a ligand. Ligands may includ ...
on the extracellular side of the plasma membrane, forming a temporary substrate-bound open form of the antiporter. # This becomes an occluded, substrate-bound state that is still facing the extracellular space. # The antiporter undergoes a conformational change to become an occluded, substrate-bound protein that is now facing the cytosol. As it does so, it passes through a temporary fully-occluded intermediate stage. # The substrate is released from the antiporter as it takes on an open, inward-facing conformation. # The antiporter can now bind to its second substrate and transport it in the opposite direction by taking on its transient substrate-bound open state. # This is followed by an occluded, substrate-bound state that is still facing the cytosol, a conformation change with a temporary fully-occluded intermediate stage, and a return to the antiporter's open, outward-facing conformation. # The second substrate is released and the antiporter can return to its original conformation state, where it is ready to bind to new molecules or ions and repeat its transport process.


History

Antiporters were discovered as scientists were exploring ion transport mechanisms across biological membranes. The early studies took place in the mid-20th century and were focused on the mechanisms that transported ions such as sodium, potassium, and calcium across the plasma membrane. Researchers made the observation that these ions were moved in opposite directions and hypothesized the existence of membrane proteins that could facilitate this type of transport. In the 1960's, biochemist Efraim Racker made a breakthrough in the discovery of antiporters. Through purification from bovine heart mitochondria, Racker and his colleagues found a mitochondrial protein that could exchange inorganic phosphate for hydroxide ions. The protein is located in the inner mitochondrial membrane and transports phosphate ions for use in
oxidative phosphorylation Oxidative phosphorylation(UK , US : or electron transport-linked phosphorylation or terminal oxidation, is the metabolic pathway in which Cell (biology), cells use enzymes to Redox, oxidize nutrients, thereby releasing chemical energy in order ...
. It became known as the phosphate-hydroxide antiporter, or mitochondrial phosphate carrier protein, and was the first example of an antiporter identified in living cells. As time went on, researchers discovered other antiporters in different membranes and in various organisms. This includes the
sodium-calcium exchanger The sodium-calcium exchanger (often denoted Na+/Ca2+ exchanger, exchange protein, or NCX) is an antiporter membrane protein that removes calcium from cells. It uses the energy that is stored in the electrochemical gradient of sodium (Na+) by ...
(NCX), another crucial antiporter that regulates intracellular calcium levels through the exchange of sodium ions for calcium ions across the plasma membrane. It was discovered in the 1970s and is now a well-characterized antiporter known to be found in many different types of cells. Advances in the fields of
biochemistry Biochemistry, or biological chemistry, is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology, a ...
and
molecular biology Molecular biology is a branch of biology that seeks to understand the molecule, molecular basis of biological activity in and between Cell (biology), cells, including biomolecule, biomolecular synthesis, modification, mechanisms, and interactio ...
have enabled the identification and characterization of a wide range of antiporters. Understanding the transport processes of various molecules and ions has provided insight into cellular transport mechanisms, as well as the role of antiporters in various physiological functions and in the maintenance of homeostasis


Role in homeostasis


Sodium-calcium exchanger

The
sodium-calcium exchanger The sodium-calcium exchanger (often denoted Na+/Ca2+ exchanger, exchange protein, or NCX) is an antiporter membrane protein that removes calcium from cells. It uses the energy that is stored in the electrochemical gradient of sodium (Na+) by ...
, also known as the Na+/Ca2+ exchanger or NCX, is an antiporter responsible for removing calcium from cells. This title encompasses a class of ion transporters that are commonly found in the heart, kidney, and brain. They use the energy stored in the electrochemical gradient of sodium to exchange the flow of three sodium ions into the cell for the export of one calcium ion. Though this exchanger is most common in the membranes of the
mitochondria A mitochondrion () is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is us ...
and the
endoplasmic reticulum The endoplasmic reticulum (ER) is a part of a transportation system of the eukaryote, eukaryotic cell, and has many other important functions such as protein folding. The word endoplasmic means "within the cytoplasm", and reticulum is Latin for ...
of
excitable cell Membrane potential (also transmembrane potential or membrane voltage) is the difference in electric potential between the interior and the exterior of a biological cell. It equals the interior potential minus the exterior potential. This is th ...
s, it can be found in many different cell types in various species. Although the sodium-calcium exchanger has a low affinity for calcium ions, it can transport a high amount of the ion in a short period of time. Because of these properties, it is useful in situations where there is an urgent need to export high amounts of calcium, such as after an
action potential An action potential (also known as a nerve impulse or "spike" when in a neuron) is a series of quick changes in voltage across a cell membrane. An action potential occurs when the membrane potential of a specific Cell (biology), cell rapidly ri ...
has occurred. Its characteristics also enable NCX to work with other proteins that have a greater affinity for calcium ions without interfering with their functions. NCX works with these proteins to carry out functions such as cardiac muscle relaxation,
excitation-contraction coupling Muscle contraction is the activation of tension-generating sites within muscle cells. In physiology, muscle contraction does not necessarily mean muscle shortening because muscle tension can be produced without changes in muscle length, such as ...
, and photoreceptor activity. They also maintain the concentration of calcium ions in the sarcoplasmic reticulum of cardiac cells, endoplasmic reticulum of excitable and nonexcitable cells, and the mitochondria. Another key characteristic of this antiporter is its reversibility. This means that if the cell is depolarized enough, the extracellular sodium level is low enough, or the intracellular level of sodium is high enough, NCX will operate in the reverse direction and begin bringing calcium into the cell. For example, when NCX functions during
excitotoxicity In excitotoxicity, neuron, nerve cells suffer damage or death when the levels of otherwise necessary and safe neurotransmitters such as glutamic acid, glutamate become pathologically high, resulting in excessive stimulation of cell surface recept ...
, this characteristic allows it to have a protective effect because the accompanying increase in intracellular calcium levels enables the exchanger to work in its normal direction regardless of the sodium concentration. Another example is the depolarization of cardiac muscle cells, which is accompanied by a large increase in the intracellular sodium concentration that causes NCX to work in reverse. Because the concentration of calcium is carefully regulated during the cardiac action potential, this is only a temporary effect as calcium is pumped out of the cell. The sodium-calcium exchanger's role in maintaining calcium homeostasis in
cardiac muscle cells Cardiac muscle (also called heart muscle or myocardium) is one of three types of vertebrate muscle tissues, the others being skeletal muscle and smooth muscle. It is an involuntary, striated muscle that constitutes the main tissue of the wall of ...
allows it to help relax the heart muscle as it exports calcium during
diastole Diastole ( ) is the relaxed phase of the cardiac cycle when the chambers of the heart are refilling with blood. The contrasting phase is systole when the heart chambers are contracting. Atrial diastole is the relaxing of the atria, and ventricul ...
. Therefore, its dysfunction can result in abnormal calcium movement and the development of various cardiac diseases. Abnormally high intracellular calcium levels can hinder diastole and cause abnormal
systole Systole ( ) is the part of the cardiac cycle during which some chambers of the heart contract after refilling with blood. Its contrasting phase is diastole, the relaxed phase of the cardiac cycle when the chambers of the heart are refilling ...
and
arrhythmia Arrhythmias, also known as cardiac arrhythmias, are irregularities in the cardiac cycle, heartbeat, including when it is too fast or too slow. Essentially, this is anything but normal sinus rhythm. A resting heart rate that is too fast – ab ...
s. Arrhythmias can occur when calcium is not properly exported by NCX, causing delayed afterdepolarizations and triggering abnormal activity that can possibly lead to
atrial fibrillation Atrial fibrillation (AF, AFib or A-fib) is an Heart arrhythmia, abnormal heart rhythm (arrhythmia) characterized by fibrillation, rapid and irregular beating of the Atrium (heart), atrial chambers of the heart. It often begins as short periods ...
and
ventricular tachycardia Ventricular tachycardia (V-tach or VT) is a cardiovascular disorder in which fast heart rate occurs in the ventricles of the heart. Although a few seconds of VT may not result in permanent problems, longer periods are dangerous; and multiple ...
. If the heart experiences
ischemia Ischemia or ischaemia is a restriction in blood supply to any tissue, muscle group, or organ of the body, causing a shortage of oxygen that is needed for cellular metabolism (to keep tissue alive). Ischemia is generally caused by problems ...
, the inadequate oxygen supply can disrupt ion homeostasis. When the body tries to stabilize this by returning blood to the area,
ischemia-reperfusion injury Reperfusion injury, sometimes called ischemia-reperfusion injury (IRI) or reoxygenation injury, is the tissue damage caused when blood supply returns to tissue ('' re-'' + ''perfusion'') after a period of ischemia or lack of oxygen (anoxia or hy ...
, a type of oxidative stress, occurs. If NCX is dysfunctional, it can exacerbate the increase of calcium that accompanies reperfusion, causing cell death and tissue damage. Similarly, NCX dysfunction has found to be involved in
ischemic stroke Stroke is a medical condition in which poor blood flow to a part of the brain causes cell death. There are two main types of stroke: ischemic, due to lack of blood flow, and hemorrhagic, due to bleeding. Both cause parts of the brain to stop ...
s. Its activity is upregulated, causing a increased cytosolic calcium level, which can lead to neuronal cell death. The Na+/Ca2+ exchanger has also been implicated in neurological disorders such as
Alzheimer's disease Alzheimer's disease (AD) is a neurodegenerative disease and the cause of 60–70% of cases of dementia. The most common early symptom is difficulty in remembering recent events. As the disease advances, symptoms can include problems wit ...
and
Parkinson's disease Parkinson's disease (PD), or simply Parkinson's, is a neurodegenerative disease primarily of the central nervous system, affecting both motor system, motor and non-motor systems. Symptoms typically develop gradually and non-motor issues become ...
. Its dysfunction can result in
oxidative stress Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to readily detoxify the reactive intermediates or to repair the resulting damage. Disturbances in the normal ...
and neuronal cell death, contributing to the cognitive decline that characterizes Alzheimer's disease. The dysregulation of calcium homeostasis has been found to be a key part of neuron death and Alzheimer's
pathogenesis In pathology, pathogenesis is the process by which a disease or disorder develops. It can include factors which contribute not only to the onset of the disease or disorder, but also to its progression and maintenance. The word comes . Descript ...
. For example, neurons that have
neurofibrillary tangle Neurofibrillary tangles (NFTs) are intracellular aggregates of hyperphosphorylated tau protein that are most commonly known as a primary Biomarker (medicine), biomarker of Alzheimer's disease. Their presence is also found in numerous other disea ...
s contain high levels of calcium and show hyperactivation of calcium-dependent proteins. The abnormal calcium handling of atypical NCX function can also cause the mitochondrial dysfunction, oxidative stress, and neuronal cell death that characterize Parkinson's. In this case, if
dopaminergic neurons Dopaminergic cell groups, DA cell groups, or dopaminergic nuclei are collections of neurons in the central nervous system that synthesize the neurotransmitter dopamine. In the 1960s, dopaminergic neurons or ''dopamine neurons'' were first identi ...
of the
substantia nigra The substantia nigra (SN) is a basal ganglia structure located in the midbrain that plays an important role in reward and movement. ''Substantia nigra'' is Latin for "black substance", reflecting the fact that parts of the substantia nigra a ...
are affected, it can contribute to the onset and development of Parkinson's disease. Although the mechanism is not entirely understood, disease models have shown a link between NCX and Parkinson's and that NCX inhibitors can prevent death of dopaminergic neurons.


Sodium-hydrogen antiporter

The
sodium–hydrogen antiporter The sodium–hydrogen antiporter or sodium–proton exchanger (Na+/H+ exchanger or NHX) is a membrane protein that transports Na+ into the cell, and H+ out of the cell (antiport). Function They are found in the membranes of many cells, and espe ...
, also known as the sodium-proton exchanger, Na+/H+ exchanger, or NHE, is an antiporter responsible for transporting sodium into the cell and hydrogen out of the cell. As such, it is important in the regulation of cellular pH and sodium levels. There are differences among the types of NHE antiporter families present in eukaryotes and prokaryotes. The 9
isoforms A protein isoform, or "protein variant", is a member of a set of highly similar proteins that originate from a single gene and are the result of genetic differences. While many perform the same or similar biological roles, some isoforms have uniqu ...
of this transporter that are found in the human genome fall under several families, including the cation-proton antiporters ( CPA 1, CPA 2, and CPA 3) and sodium-transporting carboxylic acid decarboxylase (NaT-DC). Prokaryotic organisms contain the Na+/H+ antiporter families NhaA, NhaB, NhaC, NhaD, and NhaE. Because enzymes can only function at certain pH ranges, it is critical for cells to tightly regulate cytosolic pH. When a cell's pH is outside of the optimal range, the sodium-hydrogen antiporter detects this and is activated to transport ions as a
homeostatic mechanism In biology, homeostasis (British also homoeostasis; ) is the state of steady internal physical and chemical conditions maintained by living systems. This is the condition of optimal functioning for the organism and includes many variables, su ...
to restore pH balance. Since ion flux can be reversed in mammalian cells, NHE can also be used to transport sodium out of the cell to prevent excess sodium from accumulating and causing
toxicity Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacteria, bacterium, or plant, as well as the effect o ...
. As suggested by its functions, this antiporter is located in the
kidney In humans, the kidneys are two reddish-brown bean-shaped blood-filtering organ (anatomy), organs that are a multilobar, multipapillary form of mammalian kidneys, usually without signs of external lobulation. They are located on the left and rig ...
for sodium reabsorption regulation and in the heart for intracellular pH and
contractility Contractility refers to the ability for self- contraction, especially of the muscles or similar active biological tissue *Contractile ring in cytokinesis *Contractile vacuole *Muscle contraction **Myocardial contractility *See contractile cell fo ...
regulation. NHE plays an important role in the
nephron The nephron is the minute or microscopic structural and functional unit of the kidney. It is composed of a renal corpuscle and a renal tubule. The renal corpuscle consists of a tuft of capillaries called a glomerulus and a cup-shaped structu ...
of the kidney, especially in the cells of the
proximal convoluted tubule The proximal tubule is the segment of the nephron in kidneys which begins from the renal (tubular) pole of the Bowman's capsule to the beginning of loop of Henle. At this location, the glomerular parietal epithelial cells (PECs) lining bowman’s ...
and
collecting duct The collecting duct system of the kidney consists of a series of tubules and ducts that physically connect nephrons to a minor calyx or directly to the renal pelvis. The collecting duct participates in electrolyte and fluid balance through rea ...
. The sodium-hydrogen antiporter's function is upregulated by
Angiotensin II Angiotensin is a peptide hormone that causes vasoconstriction and an increase in blood pressure. It is part of the renin–angiotensin system, which regulates blood pressure. Angiotensin also stimulates the release of aldosterone from the ...
in the proximal convoluted tubule when the body needs to reabsorb sodium and excrete hydrogen. Plants are sensitive to high amounts of salt, which can halt certain necessary functions of the eukaryotic organism, including
photosynthesis Photosynthesis ( ) is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabo ...
. For the organisms to maintain homeostasis and carry out crucial functions, Na+/H+ antiporters are used to rid the
cytoplasm The cytoplasm describes all the material within a eukaryotic or prokaryotic cell, enclosed by the cell membrane, including the organelles and excluding the nucleus in eukaryotic cells. The material inside the nucleus of a eukaryotic cell a ...
of excess sodium by pumping Na+ out of the cell. These antiporters can also close their channel to stop sodium from entering the cell, along with allowing excess sodium within the cell to enter into a
vacuole A vacuole () is a membrane-bound organelle which is present in Plant cell, plant and Fungus, fungal Cell (biology), cells and some protist, animal, and bacterial cells. Vacuoles are essentially enclosed compartments which are filled with water ...
. Dysregulation of the sodium-hydrogen antiporter's activity has been linked to cardiovascular diseases, renal disorders, and neurological conditions NHE inhibitors are being developed to treat these issues. One of the isoforms of the antiporter, NHE1, is essential to the function of the mammalian
myocardium Cardiac muscle (also called heart muscle or myocardium) is one of three types of vertebrate muscle tissues, the others being skeletal muscle and smooth muscle. It is an involuntary, striated muscle that constitutes the main tissue of the wall o ...
. NHE is involved in the case of
hypertrophy Hypertrophy is the increase in the volume of an organ or tissue due to the enlargement of its component cells. It is distinguished from hyperplasia, in which the cells remain approximately the same size but increase in number. Although hypertro ...
and when damage to the heart muscle occurs, such as during
ischemia Ischemia or ischaemia is a restriction in blood supply to any tissue, muscle group, or organ of the body, causing a shortage of oxygen that is needed for cellular metabolism (to keep tissue alive). Ischemia is generally caused by problems ...
and reperfusion. Studies have shown that NHE1 is more active in animal models experiencing
myocardial infarction A myocardial infarction (MI), commonly known as a heart attack, occurs when Ischemia, blood flow decreases or stops in one of the coronary arteries of the heart, causing infarction (tissue death) to the heart muscle. The most common symptom ...
and
left ventricular hypertrophy Left ventricular hypertrophy (LVH) is thickening of the heart muscle of the left ventricle of the heart, that is, left-sided ventricular hypertrophy and resulting increased left ventricular mass. Causes While ventricular hypertrophy occurs ...
. During these cardiac events, the function of the sodium-hydrogen antiporter causes an increase in the sodium levels of
cardiac muscle cells Cardiac muscle (also called heart muscle or myocardium) is one of three types of vertebrate muscle tissues, the others being skeletal muscle and smooth muscle. It is an involuntary, striated muscle that constitutes the main tissue of the wall of ...
. In turn, the work of the sodium-calcium antiporter leads to more calcium being brought into the cell, which is what results in damage to the myocardium. Five isoforms of NHE are found in kidney's epithelial cells. The best studied one is NHE3, which is mainly located in the
proximal tubule The proximal tubule is the segment of the nephron in kidneys which begins from the renal (tubular) pole of the Bowman's capsule to the beginning of loop of Henle. At this location, the glomerular parietal epithelial cells (PECs) lining bowman’s ...
s of the kidney and plays a key role in acid-base homeostasis. Issues with NHE3 disrupt the reabsorption of sodium and secretion of hydrogen. The main conditions that NHE3 dysregulation can cause are hypertension and
renal tubular acidosis Renal tubular acidosis (RTA) is a medical condition that involves an accumulation of acid in the body due to a failure of the kidneys to appropriately acidify the urine. In renal physiology, when blood is filtered by the kidney, the filtrate ...
(RTA).
Hypertension Hypertension, also known as high blood pressure, is a Chronic condition, long-term Disease, medical condition in which the blood pressure in the artery, arteries is persistently elevated. High blood pressure usually does not cause symptoms i ...
can occur when more sodium is reabsorbed in the kidneys because water will follow the sodium ions and create an elevated blood volume. This, in turn, leads to elevated blood pressure. RTA is characterized by the inability of the kidneys to acidify the urine due to underactive NHE3 and reduced secretion of hydrogen ions, resulting in
metabolic acidosis Metabolic acidosis is a serious electrolyte disorder characterized by an imbalance in the body's acid-base balance. Metabolic acidosis has three main root causes: increased acid production, loss of bicarbonate, and a reduced ability of the kidn ...
. On the other hand, overactive NHE3 can lead to excess secretion of hydrogen ions and
metabolic alkalosis Metabolic alkalosis is an acid-base disorder in which the pH of tissue is elevated beyond the normal range (7.35–7.45). This is the result of decreased hydrogen ion concentration, leading to increased bicarbonate (), or alternatively a dire ...
, where the blood is too alkaline. NHE can also be linked to
neurodegeneration A neurodegenerative disease is caused by the progressive loss of neurons, in the process known as neurodegeneration. Neuronal damage may also ultimately result in their cell death, death. Neurodegenerative diseases include amyotrophic lateral sc ...
. The dysregulation or loss of the isoform NHE6 can lead to pathological changes in the
tau protein The tau proteins (abbreviated from tubulin associated unit) form a group of six highly soluble protein isoforms produced by alternative splicing from the gene ''MAPT'' (microtubule-associated protein tau). They have roles primarily in maintainin ...
s of human
neuron A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
s, which can have huge consequences. For example,
Christianson Syndrome Christianson syndrome is an X linked syndrome associated with intellectual disability, microcephaly, seizures, ataxia and absent speech. Presentation Onset of symptoms is normally within the first year of life with truncal ataxia and seizures. ...
(CS) is an X-linked disorder caused by a loss-of-function mutation in NHE6, which leads to the over acidification of
endosome Endosomes are a collection of intracellular sorting organelles in eukaryotic cells. They are parts of the endocytic membrane transport pathway originating from the trans Golgi network. Molecules or ligands internalized from the plasma membra ...
s. In studies done on postmortem brains of individuals with CS, lower NHE6 function was linked to higher levels of tau deposition. The level of tau phosphorylation was also found to be elevated, which leads to the formation of insoluble tangles that can cause neuronal damage and death. Tau proteins are also implicated in other neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases.


Chloride-bicarbonate antiporter

The chloride-bicarbonate antiporter is crucial to maintaining pH and fluid balance through its function of exchanging
bicarbonate In inorganic chemistry, bicarbonate (IUPAC-recommended nomenclature: hydrogencarbonate) is an intermediate form in the deprotonation of carbonic acid. It is a polyatomic anion with the chemical formula . Bicarbonate serves a crucial bioche ...
and
chloride The term chloride refers to a compound or molecule that contains either a chlorine anion (), which is a negatively charged chlorine atom, or a non-charged chlorine atom covalently bonded to the rest of the molecule by a single bond (). The pr ...
ions through cell membranes. This exchange occurs in many different types of body cells. In the cardiac
Purkinje fibers The Purkinje fibers, named for Jan Evangelista PurkynÄ›, ( ; ; Purkinje tissue or subendocardial branches) are located in the inner ventricular walls of the heart, just beneath the endocardium in a space called the subendocardium. The Purki ...
and
smooth muscle cells Smooth muscle is one of the three major types of vertebrate muscle tissue, the others being skeletal muscle, skeletal and cardiac muscle. It can also be found in invertebrates and is controlled by the autonomic nervous system. It is non-striated ...
of the
ureter The ureters are tubes composed of smooth muscle that transport urine from the kidneys to the urinary bladder. In an adult human, the ureters typically measure 20 to 30 centimeters in length and about 3 to 4 millimeters in diameter. They are lin ...
s, this antiporter is the main mechanism of chloride transport into the cells.
Epithelial cells Epithelium or epithelial tissue is a thin, continuous, protective layer of cells with little extracellular matrix. An example is the epidermis, the outermost layer of the skin. Epithelial ( mesothelial) tissues line the outer surfaces of man ...
such as those of the kidney use chloride-bicarbonate exchange to regulate their volume, intracellular pH, and extracellular pH. Gastric
parietal cell Parietal cells (also known as oxyntic cells) are epithelial cells in the stomach that secrete hydrochloric acid (HCl) and intrinsic factor. These cells are located in the gastric glands found in the lining of the fundus and body regions o ...
s,
osteoclast An osteoclast () is a type of bone cell that breaks down bone tissue. This function is critical in the maintenance, repair, and bone remodeling, remodeling of bones of the vertebrate, vertebral skeleton. The osteoclast disassembles and digests th ...
s, and other acid-secreting cells have chloride-bicarbonate antiporters that function in the basolateral membrane to dispose of excess bicarbonate left behind by the function of
carbonic anhydrase The carbonic anhydrases (or carbonate dehydratases) () form a family of enzymes that catalyst, catalyze the interconversion between carbon dioxide and water and the Dissociation (chemistry), dissociated ions of carbonic acid (i.e. bicarbonate a ...
and apical proton pumps. However, base-secreting cells exhibit apical chloride-bicarbonate exchange and basolateral proton pumps. An example of a chloride-bicarbonate antiporter is the
chloride anion exchanger Chloride anion exchanger, also known as down-regulated in adenoma (protein DRA), is a protein that in humans is encoded by the ''SLC26A3'' gene. Function Protein DRA is a membrane protein in intestinal cells. It is an anion exchanger and a me ...
, also known as down-regulated in adenoma (protein DRA). It is found in the
intestinal mucosa The gastrointestinal wall of the gastrointestinal tract is made up of four layers of specialised tissue. From the inner cavity of the gut (the lumen) outwards, these are the mucosa, the submucosa, the muscular layer and the serosa or adventitia. ...
, especially in the
columnar epithelium Epithelium or epithelial tissue is a thin, continuous, protective layer of cells with little extracellular matrix. An example is the epidermis, the outermost layer of the skin. Epithelial ( mesothelial) tissues line the outer surfaces of many ...
and
goblet cell Goblet cells are simple columnar epithelial cells that secrete gel-forming mucins, like mucin 2 in the lower gastrointestinal tract, and mucin 5AC in the respiratory tract. The goblet cells mainly use the merocrine method of secretion, secre ...
s of the apical surface of the membrane, where it carries out the function of chloride and bicarbonate exchange. Protein DRA's reuptake of chloride is critical to creating an
osmotic gradient Osmosis (, ) is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential (region of ...
that allows the intestine to reabsorb water. Another well-studied chloride-bicarbonate antiporter is anion exchanger 1 (AE1), which is also known as
band 3 anion transport protein Band 3 anion transport protein, also known as anion exchanger 1 (AE1) or band 3 or solute carrier family 4 member 1 (SLC4A1), is a protein that is encoded by the gene in humans. Band 3 anion transport protein is a phylogenetically-preserved ...
or solute carrier family 4 member 1 (SLC4A1). This exchanger is found in
red blood cell Red blood cells (RBCs), referred to as erythrocytes (, with -''cyte'' translated as 'cell' in modern usage) in academia and medical publishing, also known as red cells, erythroid cells, and rarely haematids, are the most common type of blood cel ...
s, where it helps transport bicarbonate and carbon dioxide between the lungs and tissues to maintain acid-base homeostasis. AE1 also expressed in the basolateral side of cells of the renal tubules. It is crucial in the
collecting duct The collecting duct system of the kidney consists of a series of tubules and ducts that physically connect nephrons to a minor calyx or directly to the renal pelvis. The collecting duct participates in electrolyte and fluid balance through rea ...
of the nephron, which is where its acid-secreting α-intercalated cells are located. These cells use carbon dioxide and water to generate hydrogen and bicarbonate ions, which is catalyzed by carbonic anhydrase. The hydrogen is exchanged across the membrane into the lumen of the collecting duct, and thus acid is excreted into the urine. Because of its importance to the reabsorption of water in the intestine, mutations in protein DRA cause a condition called
congenital chloride diarrhea Congenital chloride diarrhea (CCD, also congenital chloridorrhea or Darrow Gamble syndrome) is a genetic disorder due to an autosomal recessive mutation on chromosome 7. The mutation is in downregulated-in-adenoma (DRA), a gene that encodes a m ...
(CCD). This disorder is caused by an autosomal recessive mutation in the DRA gene on chromosome 7. CCD symptoms in newborns are chronic diarrhea with failure to thrive, and the disorder is characterized by diarrhea that causes
metabolic alkalosis Metabolic alkalosis is an acid-base disorder in which the pH of tissue is elevated beyond the normal range (7.35–7.45). This is the result of decreased hydrogen ion concentration, leading to increased bicarbonate (), or alternatively a dire ...
. Mutations of kidney AE1 can lead to
distal renal tubular acidosis Distal renal tubular acidosis (dRTA) is the classical form of RTA, being the first described. Distal RTA is characterized by a failure of acid secretion by the alpha intercalated cells of the distal tubule and cortical collecting duct of the di ...
, a disorder characterized by the inability to secrete acid into the urine. This causes
metabolic acidosis Metabolic acidosis is a serious electrolyte disorder characterized by an imbalance in the body's acid-base balance. Metabolic acidosis has three main root causes: increased acid production, loss of bicarbonate, and a reduced ability of the kidn ...
, where the blood is too acidic. A chronic state of metabolic acidosis can the health of the bones, kidneys, muscles, and cardiovascular system. Mutations in
erythrocyte Red blood cells (RBCs), referred to as erythrocytes (, with -''cyte'' translated as 'cell' in modern usage) in academia and medical publishing, also known as red cells, erythroid cells, and rarely haematids, are the most common type of blood ce ...
AE1 cause alterations of its function, leading to changes in red blood cell
morphology Morphology, from the Greek and meaning "study of shape", may refer to: Disciplines *Morphology (archaeology), study of the shapes or forms of artifacts *Morphology (astronomy), study of the shape of astronomical objects such as nebulae, galaxies, ...
and function. This can have serious consequences because the shape of red blood cells is closely tied to their function of gas exchange in the lungs and tissues. One such condition is
hereditary spherocytosis Hereditary spherocytosis (HS) is a congenital hemolytic disorder wherein a genetic genetic mutation, mutation coding for a structural membrane protein phenotype causes the red blood cells to be sphere-shaped (spherocytosis), rather than the norma ...
, a genetic disorder characterized by spherical red blood cells. Another is
Southeast Asian ovalocytosis Southeast Asian ovalocytosis is a blood disorder that is similar to, but distinct from hereditary elliptocytosis. It is common in some communities in Malaysia and Papua New Guinea, as it confers some resistance to cerebral Falciparum Malaria. Pa ...
, where a deletion in the AE1 gene generates oval-shaped erythrocytes. Finally,
overhydrated hereditary stomatocytosis Hereditary stomatocytosis describes a number of inherited, mostly autosomal dominant human conditions which affect the red blood cell and create the appearance of a slit-like area of central pallor (stomatocyte) among erythrocytes on peripheral bl ...
is a rare genetic disorder where red blood cells have an abnormally high volume, leading to changes in hydration status. The proper function of AE2, an isoform of AE1, is important in gastric secretion, osteoclast differentiation and function, and the synthesis of enamel. The hydrochloric acid secretion at the apical surface of both gastric parietal cells and osteoclasts relies on chloride-bicarbonate exchange in the basolateral surface. Studies found that mice with nonfunctional AE2 did not secrete
hydrochloric acid Hydrochloric acid, also known as muriatic acid or spirits of salt, is an aqueous solution of hydrogen chloride (HCl). It is a colorless solution with a distinctive pungency, pungent smell. It is classified as a acid strength, strong acid. It is ...
, and it was concluded that the exchanger is necessary for hydrochloric acid loading in parietal cells. When AE2 expression was suppressed in an animal model, cell lines were unable to differentiate into osteoclasts and perform their functions. Additionally, cells that had osteoclast markers but were deficient in AE2 were abnormal compared to the wild-type cells and were unable to resorb mineralized tissue. This demonstrates the importance of AE2 in osteoclast function. Finally, as the hydroxyapatite crystals of enamel are being formed, a lot of hydrogen is produced, which must be neutralized so that mineralization can proceed. Mice with inactivated AE2 were toothless and suffered from incomplete enamel maturation.


Chloride-hydrogen antiporter

The chloride-hydrogen antiporter facilitates the exchange of chloride ions for hydrogen ions across plasma membranes, thus playing a critical role in maintaining acid-base balance and chloride homeostasis. It is found in various tissues, including the gastrointestinal tract, kidneys, and
pancreas The pancreas (plural pancreases, or pancreata) is an Organ (anatomy), organ of the Digestion, digestive system and endocrine system of vertebrates. In humans, it is located in the abdominal cavity, abdomen behind the stomach and functions as a ...
. The well-known chloride-hydrogen antiporters belong in the CLC family, which have isoforms from CLC-1 to CLC-7, each with a distinct tissue distribution. Their structure involves two CLC proteins coming together to form a homodimer or a heterodimer where both monomers contain an ion translocation pathway. CLC proteins can either be ion channels or anion-proton exchangers, so CLC-1 and CLC-2 are membrane chloride channels, while CLC-3 through CLC-7 are chloride-hydrogen exchangers. CLC-4 is a member of the CLC family that is prominent in the brain, but is also located in the liver, kidneys, heart, skeletal muscle, and intestine. It likely resides in
endosome Endosomes are a collection of intracellular sorting organelles in eukaryotic cells. They are parts of the endocytic membrane transport pathway originating from the trans Golgi network. Molecules or ligands internalized from the plasma membra ...
s and participates in their acidification, but can also be expressed in the endoplasmic reticulum and plasma membrane. Its roles are not entirely clear, but CLC-4 has been found to possibly participate in endosomal acidification,
transferrin Transferrins are glycoproteins found in vertebrates which bind and consequently mediate the transport of iron (Fe) through blood plasma. They are produced in the liver and contain binding sites for two Iron(III), Fe3+ ions. Human transferrin is ...
trafficking, renal
endocytosis Endocytosis is a cellular process in which Chemical substance, substances are brought into the cell. The material to be internalized is surrounded by an area of cell membrane, which then buds off inside the cell to form a Vesicle (biology and chem ...
, and the hepatic
secretory pathway Secretion is the movement of material from one point to another, such as a secreted chemical substance from a cell (biology), cell or gland. In contrast, excretion is the removal of certain substances or waste products from a cell or organism. Th ...
. CLC-5 is one of the best-studied members of this protein family. It shares 80% of its amino acid sequence with CLC-3 and CLC-4, but it is mainly found in the kidney, especially in the
proximal tubule The proximal tubule is the segment of the nephron in kidneys which begins from the renal (tubular) pole of the Bowman's capsule to the beginning of loop of Henle. At this location, the glomerular parietal epithelial cells (PECs) lining bowman’s ...
,
collecting duct The collecting duct system of the kidney consists of a series of tubules and ducts that physically connect nephrons to a minor calyx or directly to the renal pelvis. The collecting duct participates in electrolyte and fluid balance through rea ...
, and ascending limb of the loop of Henle. It functions to transport substances through the endosomal membrane, so it is crucial for
pinocytosis In cellular biology, pinocytosis, otherwise known as fluid endocytosis and bulk-phase pinocytosis, is a mode of endocytosis in which small molecules dissolved in extracellular fluid are brought into the cell through an invagination of the cell me ...
,
receptor-mediated endocytosis Receptor-mediated endocytosis (RME), also called clathrin-mediated endocytosis, is a process by which cells absorb metabolites, hormones, proteins – and in some cases viruses – by the inward budding of the plasma membrane (invagination). This ...
, and endocytosis of plasma membrane proteins from the apical surface. CLC-7 is another example of a CLC family protein. It is ubiquitously expressed as the chloride-hydrogen antiporter in
lysosome A lysosome () is a membrane-bound organelle that is found in all mammalian cells, with the exception of red blood cells (erythrocytes). There are normally hundreds of lysosomes in the cytosol, where they function as the cell’s degradation cent ...
s and in the ruffled border of osteoclasts. CLC-7 may be important for regulating to concentration of chloride in lysosomes. It is associated with a protein called Ostm1, forming a complex that allows CLC-7 to carry out its functions. For example, these proteins are crucial to the process of acidifying the resorption lacuna, which enables
bone remodeling 300 px, Bone tissue is removed by osteoclasts, and then new bone tissue is formed by osteoblasts. Both processes utilize cytokine ( Insulin-like_growth_factor.html" ;"title="TGF-β, Insulin-like growth factor">IGF) signalling. In osteology, bone ...
to occur. CLC-4 has been connected with mental retardation involving
seizure disorders Epilepsy is a group of non-communicable neurological disorders characterized by a tendency for recurrent, unprovoked seizures. A seizure is a sudden burst of abnormal electrical activity in the brain that can cause a variety of symptoms, rang ...
, facial abnormalities, and behavior disorders. Studies found
frameshift Ribosomal frameshifting, also known as translational frameshifting or translational recoding, is a biological phenomenon that occurs during translation that results in the production of multiple, unique proteins from a single mRNA. The process can ...
and
missense mutation In genetics, a missense mutation is a point mutation in which a single nucleotide change results in a codon that codes for a different amino acid. It is a type of nonsynonymous substitution. Missense mutations change amino acids, which in turn alt ...
s in patients exhibiting these symptoms. Because these symptoms were mostly exhibited in males, with less severe pathology in females, it is likely
X-linked Sex linkage describes the sex-specific patterns of inheritance and expression when a gene is present on a sex chromosome (allosome) rather than a non-sex chromosome ( autosome). Genes situated on the X-chromosome are thus termed X-linked, and ...
. Studies done on animal models have also shown the possibility of a connection between nonfunctional CLC-4 and impaired neural branching of hippocampus neurons. Defects in the CLC-5 gene were shown to be the cause of 60% of cases of
Dent's disease Dent's disease (or Dent disease) is a rare X-linked recessive inherited condition that affects the proximal renal tubules of the kidney. It is one cause of Fanconi syndrome, and is characterized by tubular proteinuria, hypercalciuria, excess calciu ...
, which is characterized by
tubular proteinuria Tubular proteinuria is proteinuria (excessive protein in the urine) caused by renal tubular dysfunction. Proteins of low molecular weight are normally filtered at the glomerulus of the kidney and are then normally reabsorbed by the tubular cells ...
, formation of
kidney stones Kidney stone disease (known as nephrolithiasis, renal calculus disease, or urolithiasis) is a crystallopathy and occurs when there are too many minerals in the urine and not enough liquid or hydration. This imbalance causes tiny pieces of cr ...
, excess calcium in the urine,
nephrocalcinosis Nephrocalcinosis, once known as Albright's calcinosis after Fuller Albright, is a term originally used to describe the deposition of poorly soluble calcium salts in the renal parenchyma due to hyperparathyroidism. The term nephrocalcinosis is u ...
, and
chronic kidney failure Chronic kidney disease (CKD) is a type of long-term kidney disease, defined by the sustained presence of abnormal kidney function and/or abnormal kidney structure. To meet criteria for CKD, the abnormalities must be present for at least three mo ...
. This is caused by abnormalities that occur in the endocytosis process when CLC-5 is mutated. Dent's disease itself is one of the causes of
Fanconi syndrome Fanconi syndrome or Fanconi's syndrome (, ) is a syndrome of inadequate reabsorption in the proximal renal tubules of the kidney. The syndrome can be caused by various underlying congenital or acquired diseases, by toxicity (for example, from t ...
, which occurs when the proximal convoluted tubules of the kidney do not perform an adequate level of reabsorption. It causes molecules produced by metabolic pathways, such as amino acids, glucose, and
uric acid Uric acid is a heterocyclic compound of carbon, nitrogen, oxygen, and hydrogen with the Chemical formula, formula C5H4N4O3. It forms ions and salts known as urates and acid urates, such as ammonium acid urate. Uric acid is a product of the meta ...
to be excreted in the urine instead of being reabsorbed. The result is
polyuria Polyuria () is excessive or an abnormally large production or Frequent urination, passage of urine (greater than 2.5 L or 3 L over 24 hours in adults). Increased production and passage of urine may also be termed as diuresis. Polyuria often appe ...
,
dehydration In physiology, dehydration is a lack of total body water that disrupts metabolic processes. It occurs when free water loss exceeds intake, often resulting from excessive sweating, health conditions, or inadequate consumption of water. Mild deh ...
,
rickets Rickets, scientific nomenclature: rachitis (from Greek , meaning 'in or of the spine'), is a condition that results in weak or soft bones in children and may have either dietary deficiency or genetic causes. Symptoms include bowed legs, stun ...
in children,
osteomalacia Osteomalacia is a disease characterized by the softening of the bones caused by impaired bone metabolism primarily due to inadequate levels of available phosphate, calcium, and vitamin D, or because of resorption of calcium. The impairment of b ...
in adults,
acidosis Acidosis is a biological process producing hydrogen ions and increasing their concentration in blood or body fluids. pH is the negative log of hydrogen ion concentration and so it is decreased by a process of acidosis. Acidemia The term ac ...
, and
hypokalemia Hypokalemia is a low level of potassium (K+) in the blood serum. Mild low potassium does not typically cause symptoms. Symptoms may include feeling tired, leg cramps, weakness, and constipation. Low potassium also increases the risk of an a ...
. CLC-7's role in osteoclast function was revealed by studies on knockout mice that developed severe
osteopetrosis Osteopetrosis, literally , also known as marble bone disease or Albers-Schönberg disease, is an extremely rare inherited disorder whereby the bones harden, becoming denser, in contrast to more prevalent conditions like osteoporosis, in which ...
. These mice were smaller, had shortened long bones, disorganized
trabecula A trabecula (: trabeculae, from Latin for 'small beam') is a small, often microscopic, biological tissue, tissue element in the form of a small Beam (structure), beam, strut or rod that supports or anchors a framework of parts within a body or ...
r structure, a missing
medullary cavity The medullary cavity (''medulla'', innermost part) is the central cavity of bone shafts where red bone marrow and/or yellow bone marrow (adipose tissue) is stored; hence, the medullary cavity is also known as the marrow cavity. Located in the ma ...
, and their teeth did not erupt. This was found to be caused by
deletion mutation In genetics, a deletion (also called gene deletion, deficiency, or deletion mutation) (sign: Δ) is a mutation (a genetic aberration) in which a part of a chromosome or a sequence of DNA is left out during DNA replication. Any number of nucleoti ...
s, missense mutations, and
gain-of-function mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, mitosi ...
s that sped up the gating of CLC-7. CLC-7 is expressed in almost every neuronal cell type, and its loss led to widespread neurodegeneration in mice, especially in the hippocampus. In longer-lived models, the
cortex Cortex or cortical may refer to: Biology * Cortex (anatomy), the outermost layer of an organ ** Cerebral cortex, the outer layer of the vertebrate cerebrum, part of which is the ''forebrain'' *** Motor cortex, the regions of the cerebral cortex i ...
and
hippocampus The hippocampus (: hippocampi; via Latin from Ancient Greek, Greek , 'seahorse'), also hippocampus proper, is a major component of the brain of humans and many other vertebrates. In the human brain the hippocampus, the dentate gyrus, and the ...
had almost entirely disappeared after 1.5 years. Finally, because of its importance in lysosomes, altered expression of CLC-7 can lead to
lysosomal storage disorders Lysosomal storage diseases (LSDs; ) are a group of over 70 rare inherited metabolic disorders that result from defects in lysosomal function. Lysosomes are sacs of enzymes within cells that digest large molecules and pass the fragments on to other ...
. Mice with a mutation introduced to the CLC-7 gene developed lysosomal storage disease and retinal degeneration.


Reduced folate carrier protein

The reduced folate carrier protein (RFC) is a transmembrane protein responsible for the transport of
folate Folate, also known as vitamin B9 and folacin, is one of the B vitamins. Manufactured folic acid, which is converted into folate by the body, is used as a dietary supplement and in food fortification as it is more stable during processing and ...
, or
vitamin B9 Folate, also known as vitamin B9 and folacin, is one of the B vitamins. Manufactured folic acid, which is converted into folate by the body, is used as a dietary supplement and in food fortification as it is more stable during processing and ...
, into cells. It uses the large gradient of organic phosphate to move folate into the cell against its concentration gradient. The RFC protein can transport folates, reduced folates, the derivatives of reduced folate, and the drug
methotrexate Methotrexate, formerly known as amethopterin, is a chemotherapy agent and immunosuppressive drug, immune-system suppressant. It is used to treat cancer, autoimmune diseases, and ectopic pregnancy, ectopic pregnancies. Types of cancers it is u ...
. The transporter is encoded by the
SLC19A1 Folate transporter 1 is a protein which in humans is encoded by the ''SLC19A1'' gene. Function Transport of folate compounds into mammalian cells can occur via receptor-mediated (see folate receptor 1) or carrier-mediated mechanisms. A funct ...
gene and is ubiquitously expressed in human cells. Its peak activity occurs at pH 7.4, with no activity occurring below pH 6.4. The RFC protein is critical because folates take the form of
hydrophilic A hydrophile is a molecule or other molecular entity that is attracted to water molecules and tends to be dissolved by water.Liddell, H.G. & Scott, R. (1940). ''A Greek-English Lexicon'' Oxford: Clarendon Press. In contrast, hydrophobes are n ...
anions at physiological pH, so they do not diffuse naturally across biological membranes. Folate is essential for processes such as
DNA synthesis DNA synthesis is the natural or artificial creation of deoxyribonucleic acid (DNA) molecules. DNA is a macromolecule made up of nucleotide units, which are linked by covalent bonds and hydrogen bonds, in a repeating structure. DNA synthesis occu ...
,
repair The technical meaning of maintenance involves functional checks, servicing, repairing or replacing of necessary devices, equipment, machinery, building infrastructure and supporting utilities in industrial, business, and residential installat ...
, and
methylation Methylation, in the chemistry, chemical sciences, is the addition of a methyl group on a substrate (chemistry), substrate, or the substitution of an atom (or group) by a methyl group. Methylation is a form of alkylation, with a methyl group replac ...
, and without entry into cells, these could not occur. Because folates are essential for various life-sustaining processes, a deficiency in this molecule can lead to fetal abnormalities, neurological disorders, cardiovascular disease, and cancer. Folates cannot be synthesized in the body, so it must be taken in through diet and moved into cells. Without the RFC protein facilitating this movement, processes such as embryological development and DNA repair cannot occur. Adequate folate levels are required for the development of the
neural tube In the developing chordate (including vertebrates), the neural tube is the embryonic precursor to the central nervous system, which is made up of the brain and spinal cord. The neural groove gradually deepens as the neural folds become elevated, ...
in the fetus. Folate deficiency during pregnancy increases the risk of defects such as
spina bifida Spina bifida (SB; ; Latin for 'split spine') is a birth defect in which there is incomplete closing of the vertebral column, spine and the meninges, membranes around the spinal cord during embryonic development, early development in pregnancy. T ...
and
anencephaly Anencephaly is the absence of a major portion of the brain, skull, and scalp that occurs during embryonic development. It is a cephalic disorder that results from a neural tube defect that occurs when the rostral (head) end of the neural tube ...
. In mouse models, inactivating both alleles of the FRC protein gene causes death of the embryo. Even if folate is supplemented during gestation, the mice died within two weeks of birth from the failure of hematopoietic tissues. Altered function of the RFC protein can increase folate deficiency, enhancing cardiovascular disease, neurodegenerative diseases, and cancer. In terms of cardiovascular issues, folate contributes to
homocysteine Homocysteine (; symbol Hcy) is a non-proteinogenic α-amino acid. It is a homologous series, homologue of the amino acid cysteine, differing by an additional methylene bridge (). It is biosynthesized from methionine by the removal of its terminal ...
metabolism. Low folate levels result in elevated homocysteine levels, which is a risk factor for cardiovascular diseases. In terms of cancer, folate deficiency is related to an increased risk, especially that of colorectal cancers. In mouse models with altered RFC protein expression showed increased transcripts of genes related to colon cancer and increased proliferation of colonocytes. The cancer risk is likely related to the FRC protein's role in DNA synthesis because inadequate levels of folate can lead to DNA damage and aberrant DNA methylation.


Vesicle neurotransmitter antiporters

Vesicle neurotransmitter antiporter Vesicle may refer to: ; In cellular biology or chemistry * Vesicle (biology and chemistry), a supramolecular assembly of lipid molecules, like a cell membrane * Synaptic vesicle ; In human embryology * Vesicle (embryology), bulge-like features o ...
s are responsible for packaging
neurotransmitter A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a Chemical synapse, synapse. The cell receiving the signal, or target cell, may be another neuron, but could also be a gland or muscle cell. Neurotra ...
s into vesicles in neurons. They utilize the electrochemical gradient of hydrogen protons across the membranes of
synaptic vesicle In a neuron, synaptic vesicles (or neurotransmitter vesicles) store various neurotransmitters that are exocytosis, released at the chemical synapse, synapse. The release is regulated by a voltage-dependent calcium channel. Vesicle (biology), Ves ...
s to move neurotransmitters into them. This is essential for the process of
synaptic transmission Neurotransmission (Latin: ''transmissio'' "passage, crossing" from ''transmittere'' "send, let through") is the process by which signaling molecules called neurotransmitters are released by the axon terminal of a neuron (the presynaptic neuron) ...
, which requires neurotransmitters to be released into the
synapse In the nervous system, a synapse is a structure that allows a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron or a target effector cell. Synapses can be classified as either chemical or electrical, depending o ...
to bind to receptors on the next neuron. One of the best characterized of these antiporters is the
vesicular monoamine transporter The vesicular monoamine transporter (VMAT) is a transport protein integrated into the membranes of synaptic vesicles of presynaptic neurons. It transports monoamine neurotransmitters – such as dopamine, serotonin, norepinephrine, epinephrin ...
(VMAT). It is responsible for the storage, sorting, and release of neurotransmitters, as well as for protecting them from autoxidation. VMAT's transport functions are dependent on the electrochemical gradient created by a vesicular hydrogen proton-ATPase.
VMAT1 Vesicular monoamine transporter 1 (VMAT1), also known as chromaffin granule amine transporter (CGAT) or solute carrier family 18 member 1 (SLC18A1), is a protein that in humans is encoded by the ''SLC18A1'' gene. VMAT1 is an integral membrane pro ...
and
VMAT2 The solute carrier family 18 member 2 (SLC18A2) also known as vesicular monoamine transporter 2 (VMAT2) is a protein that in humans is encoded by the ''SLC18A2'' gene. VMAT2 is an integral membrane protein that transports monoamines—particul ...
are two isoforms that can transport
monoamines Monoamine neurotransmitters are neurotransmitters and neuromodulators that contain one amino group connected to an aromaticity, aromatic ring by a two-carbon chain (such as -CH2-CH2-). Examples are dopamine, norepinephrine and serotonin. All m ...
such as
serotonin Serotonin (), also known as 5-hydroxytryptamine (5-HT), is a monoamine neurotransmitter with a wide range of functions in both the central nervous system (CNS) and also peripheral tissues. It is involved in mood, cognition, reward, learning, ...
,
norepinephrine Norepinephrine (NE), also called noradrenaline (NA) or noradrenalin, is an organic compound, organic chemical in the catecholamine family that functions in the brain and human body, body as a hormone, neurotransmitter and neuromodulator. The ...
, and
dopamine Dopamine (DA, a contraction of 3,4-dihydroxyphenethylamine) is a neuromodulatory molecule that plays several important roles in cells. It is an organic chemical of the catecholamine and phenethylamine families. It is an amine synthesized ...
in a proton-dependent fashion. VMAT1 can be found in
neuroendocrine cell Neuroendocrine cells are cells that receive neuronal input (through neurotransmitters released by nerve cells or neurosecretory cells) and, as a consequence of this input, release messenger molecules (hormones) into the blood. In this way they bri ...
s, while VMAT2 can be found in the neurons of the central and peripheral nervous systems, as well as in adrenal
chromaffin cell Chromaffin cells, also called pheochromocytes (or phaeochromocytes), are neuroendocrine cells found mostly in the adrenal medulla, medulla of the adrenal glands in mammals. These cells serve a variety of functions such as serving as a response to ...
s. Another important vesicle neurotransmitter antiporter is the vesicular glutamate transporter (VGLUT). This family of proteins includes three isoforms, VGLUT1,
VGLUT2 Glutamate transporters are a family of neurotransmitter transporter proteins that move glutamate – the principal excitatory neurotransmitter – across a membrane. The family of glutamate transporters is composed of two primary subclasses: the ex ...
, and VGLUT3, that are responsible for packaging
glutamate Glutamic acid (symbol Glu or E; known as glutamate in its anionic form) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a Essential amino acid, non-essential nutrient for humans, meaning that ...
- the most abundant excitatory neurotransmitter in the brain - into synaptic vesicles. These antiporters vary by location. VGLUT1 is found in areas of the brain related to higher cognitive functions, such as the
neocortex The neocortex, also called the neopallium, isocortex, or the six-layered cortex, is a set of layers of the mammalian cerebral cortex involved in higher-order brain functions such as sensory perception, cognition, generation of motor commands, ...
. VGLUT2 works to regulate basic physiological functions and is expressed in subcortical regions such as the
brainstem The brainstem (or brain stem) is the posterior stalk-like part of the brain that connects the cerebrum with the spinal cord. In the human brain the brainstem is composed of the midbrain, the pons, and the medulla oblongata. The midbrain is conti ...
and
hypothalamus The hypothalamus (: hypothalami; ) is a small part of the vertebrate brain that contains a number of nucleus (neuroanatomy), nuclei with a variety of functions. One of the most important functions is to link the nervous system to the endocrin ...
. Finally, VGLUT3 can be seen in neurons that also express other neurotransmitters. VMAT2 has been found to contribute to neurological conditions such as
mood disorder A mood disorder, also known as an affective disorder, is any of a group of conditions of mental and behavioral disorder where the main underlying characteristic is a disturbance in the person's mood. The classification is in the ''Diagnostic ...
s and Parkinson's disease. Studies done on an animal model of
clinical depression Major depressive disorder (MDD), also known as clinical depression, is a mental disorder characterized by at least two weeks of pervasive low mood, low self-esteem, and loss of interest or pleasure in normally enjoyable activities. Intro ...
showed that functional alterations of VMAT2 were associated with depression. The
nucleus accumbens The nucleus accumbens (NAc or NAcc; also known as the accumbens nucleus, or formerly as the ''nucleus accumbens septi'', Latin for ' nucleus adjacent to the septum') is a region in the basal forebrain rostral to the preoptic area of the hypo ...
,
pars compacta The pars compacta (SNpc, SNc) is one of two subdivisions of the ''substantia nigra'' of the midbrain (the other being the pars reticulata); it is situated medial to the ''pars reticulata''. It is formed by dopaminergic neurons. It projects to th ...
of the
substantia nigra The substantia nigra (SN) is a basal ganglia structure located in the midbrain that plays an important role in reward and movement. ''Substantia nigra'' is Latin for "black substance", reflecting the fact that parts of the substantia nigra a ...
, and
ventral tegmental area The ventral tegmental area (VTA) (tegmentum is Latin for ''covering''), also known as the ventral tegmental area of Tsai, or simply ventral tegmentum, is a group of neurons located close to the midline on the floor of the midbrain. The VTA is th ...
- all subregions of the brain involved in clinical depression - were found to have lower VMAT2 levels. The likely cause for this is VMAT's relationship with serotonin and norepinephrine, neurotransmitters that are related to depression. VMAT dysfunction may contribute to the altered levels of these neurotransmitters that occur in mood disorders. Lower expression of VMAT2 was found to correlate with a higher susceptibility to
Parkinson's disease Parkinson's disease (PD), or simply Parkinson's, is a neurodegenerative disease primarily of the central nervous system, affecting both motor system, motor and non-motor systems. Symptoms typically develop gradually and non-motor issues become ...
and the antiporter's
mRNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of Protein biosynthesis, synthesizing a protein. mRNA is ...
was found in all cell groups damaged by Parkinson's. This is likely because VMAT2 dysfunction can lead to a decrease in dopamine packaging into vesicles, accounting for the dopamine depletion that characterizes the disease. For this reason, the antiporter has been identified as a protective factor that could be targeted for the prevention of Parkinson's. Because alterations in glutamate release have been linked to the generation of
seizure A seizure is a sudden, brief disruption of brain activity caused by abnormal, excessive, or synchronous neuronal firing. Depending on the regions of the brain involved, seizures can lead to changes in movement, sensation, behavior, awareness, o ...
s in
epilepsy Epilepsy is a group of Non-communicable disease, non-communicable Neurological disorder, neurological disorders characterized by a tendency for recurrent, unprovoked Seizure, seizures. A seizure is a sudden burst of abnormal electrical activit ...
, alterations in the function of VGLUT may be implicated. A study was conducted where the VGLUT1 gene was inactivated in the
astrocyte Astrocytes (from Ancient Greek , , "star" and , , "cavity", "cell"), also known collectively as astroglia, are characteristic star-shaped glial cells in the brain and spinal cord. They perform many functions, including biochemical control of en ...
s and neurons of an animal model. When the gene was inactivated in astrocytes, there was an 80% loss in the antiporter protein itself and, in turn, a reduction in glutamate uptake. The mice in this condition experienced seizures, lower body mass, and higher mortality rates. The researchers concluded that VGLUT1 function in astrocytes is therefore critical to epilepsy resistance and normal weight gain. There is a lot of evidence that the glutamate system plays a role in long-term cell growth and
synaptic plasticity In neuroscience, synaptic plasticity is the ability of synapses to Chemical synapse#Synaptic strength, strengthen or weaken over time, in response to increases or decreases in their activity. Since memory, memories are postulated to be represent ...
. Disturbances of these processes has been linked to the pathology of mood disorders. The link between the function of the glutamatergic neurotransmitter system and mood disorders sets up VGLUT as one of the targets for treatment.


See also

*
Active transport In cellular biology, active transport is the movement of molecules or ions across a cell membrane from a region of lower concentration to a region of higher concentration—against the concentration gradient. Active transport requires cellula ...
*
Adenine nucleotide translocator Adenine nucleotide translocator (ANT), also known as the ADP/ATP translocase (ANT), ADP/ATP carrier protein (AAC) or mitochondrial ADP/ATP carrier, exchanges free ATP with free ADP across the inner mitochondrial membrane. ANT is the most abun ...
*
Cotransporter Cotransporters are a subcategory of membrane transport proteins (transporters) that couple the favorable movement of one molecule with its concentration gradient and unfavorable movement of another molecule against its concentration gradient. They ...
*
Reduced folate carrier family The Reduced Folate Carrier (RFC) FamilyTC# 2.A.48 is a group of transport proteins that is part of the major facilitator superfamily. RFCs take up folate, reduced folate, derivatives of reduced folate and the drug, methotrexate. Structure and Ho ...
*
Sodium-calcium exchanger The sodium-calcium exchanger (often denoted Na+/Ca2+ exchanger, exchange protein, or NCX) is an antiporter membrane protein that removes calcium from cells. It uses the energy that is stored in the electrochemical gradient of sodium (Na+) by ...
* Sodium-hydrogen antiporter *
Symporter A symporter is an integral membrane protein that is involved in the transport of two (or more) different molecules across the cell membrane in the same direction. The symporter works in the plasma membrane and molecules are transported across th ...
*
Uniporter Uniporters, also known as solute carriers or facilitated transporters, are a type of membrane transport protein that passively transports solutes (small molecules, ions, or other substances) across a cell membrane. It uses facilitated diffusion ...
*
Vesicular monoamine transporter The vesicular monoamine transporter (VMAT) is a transport protein integrated into the membranes of synaptic vesicles of presynaptic neurons. It transports monoamine neurotransmitters – such as dopamine, serotonin, norepinephrine, epinephrin ...


References


Further reading

*


External links

* {{Membrane transport Integral membrane proteins Transport phenomena