HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, two points of a
sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
(or
n-sphere In mathematics, an -sphere or hypersphere is an - dimensional generalization of the -dimensional circle and -dimensional sphere to any non-negative integer . The circle is considered 1-dimensional and the sphere 2-dimensional because a point ...
, including a
circle A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is cal ...
) are called antipodal or diametrically opposite if they are the endpoints of a
diameter In geometry, a diameter of a circle is any straight line segment that passes through the centre of the circle and whose endpoints lie on the circle. It can also be defined as the longest Chord (geometry), chord of the circle. Both definitions a ...
, a straight
line segment In geometry, a line segment is a part of a line (mathematics), straight line that is bounded by two distinct endpoints (its extreme points), and contains every Point (geometry), point on the line that is between its endpoints. It is a special c ...
between two points on a sphere and passing through its center. Given any point on a sphere, its antipodal point is the unique point at greatest
distance Distance is a numerical or occasionally qualitative measurement of how far apart objects, points, people, or ideas are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two co ...
, whether measured intrinsically (
great-circle distance The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path between the two points on the surface of the ...
on the surface of the sphere) or extrinsically ( chordal distance through the sphere's interior). Every
great circle In mathematics, a great circle or orthodrome is the circular intersection of a sphere and a plane passing through the sphere's center point. Discussion Any arc of a great circle is a geodesic of the sphere, so that great circles in spher ...
on a sphere passing through a point also passes through its antipodal point, and there are infinitely many great circles passing through a pair of antipodal points (unlike the situation for any non-antipodal pair of points, which have a unique great circle passing through both). Many results in spherical geometry depend on choosing non-antipodal points, and degenerate if antipodal points are allowed; for example, a
spherical triangle Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are gre ...
degenerates to an underspecified
lune Lune may refer to: Rivers *River Lune, in Lancashire and Cumbria, England *River Lune, Durham, in County Durham, England *Lune (Weser), a 43 km-long tributary of the Weser in Germany *Lune River (Tasmania), in south-eastern Tasmania, Australia Pl ...
if two of the vertices are antipodal. The point antipodal to a given point is called its antipodes, from the
Greek Greek may refer to: Anything of, from, or related to Greece, a country in Southern Europe: *Greeks, an ethnic group *Greek language, a branch of the Indo-European language family **Proto-Greek language, the assumed last common ancestor of all kno ...
() meaning "opposite feet"; see . Sometimes the ''s'' is dropped, and this is rendered antipode, a
back-formation Back-formation is the process or result of creating a neologism, new word via Morphology (linguistics), morphology, typically by removing or substituting actual or supposed affixes from a lexical item, in a way that expands the number of lexemes ...
.


Higher mathematics

The concept of ''antipodal points'' is generalized to
sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
s of any dimension: two points on the sphere are antipodal if they are opposite ''through the centre''. Each line through the centre intersects the sphere in two points, one for each ray emanating from the centre, and these two points are antipodal. The
Borsuk–Ulam theorem In mathematics, the Borsuk–Ulam theorem states that every continuous function from an ''n''-sphere into Euclidean ''n''-space maps some pair of antipodal points to the same point. Here, two points on a sphere are called antipodal if they ar ...
is a result from
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up t ...
dealing with such pairs of points. It says that any
continuous function In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
from S^n to \R^n maps some pair of antipodal points in S^n to the same point in \R^n. Here, S^n denotes the sphere and \R^n is
real coordinate space In mathematics, the real coordinate space or real coordinate ''n''-space, of dimension , denoted or , is the set of all ordered -tuples of real numbers, that is the set of all sequences of real numbers, also known as '' coordinate vectors''. ...
. The antipodal map A : S^n \to S^n sends every point on the sphere to its antipodal point. If points on the are represented as displacement vectors from the sphere's center in Euclidean then two antipodal points are represented by additive inverses \mathbf and -\mathbf, and the antipodal map can be defined as A(\mathbf) = -\mathbf. The antipodal map preserves
orientation Orientation may refer to: Positioning in physical space * Map orientation, the relationship between directions on a map and compass directions * Orientation (housing), the position of a building with respect to the sun, a concept in building des ...
(is homotopic to the
identity map Graph of the identity function on the real numbers In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unc ...
) when n is odd, and reverses it when n is even. Its degree is (-1)^. If antipodal points are identified (considered equivalent), the sphere becomes a model of
real projective space In mathematics, real projective space, denoted or is the topological space of lines passing through the origin 0 in the real space It is a compact, smooth manifold of dimension , and is a special case of a Grassmannian space. Basic properti ...
.


See also

* Cut locus


References


External links

* * {{planetmath reference, urlname=Antipodal, title=antipodal Spherical geometry Point (geometry)