HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, an antihomomorphism is a type of function defined on sets with multiplication that reverses the order of multiplication. An antiautomorphism is an
invertible In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers. Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that ...
antihomomorphism, i.e. an
antiisomorphism In category theory, a branch of mathematics, an antiisomorphism (or anti-isomorphism) between structured sets ''A'' and ''B'' is an isomorphism from ''A'' to the opposite of ''B'' (or equivalently from the opposite of ''A'' to ''B''). If there ...
, from a set to itself. From bijectivity it follows that antiautomorphisms have inverses, and that the inverse of an antiautomorphism is also an antiautomorphism.


Definition

Informally, an antihomomorphism is a map that switches the order of multiplication. Formally, an antihomomorphism between structures X and Y is a homomorphism \phi\colon X \to Y^, where Y^ equals Y as a set, but has its multiplication reversed to that defined on Y. Denoting the (generally non-
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
) multiplication on Y by \cdot, the multiplication on Y^, denoted by *, is defined by x*y := y \cdot x. The object Y^ is called the opposite object to Y (respectively, opposite group, opposite algebra,
opposite category In category theory, a branch of mathematics, the opposite category or dual category C^ of a given Category (mathematics), category C is formed by reversing the morphisms, i.e. interchanging the source and target of each morphism. Doing the reversal ...
etc.). This definition is equivalent to that of a homomorphism \phi\colon X^ \to Y (reversing the operation before or after applying the map is equivalent). Formally, sending X to X^ and acting as the identity on maps is a
functor In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) ar ...
(indeed, an
involution Involution may refer to: Mathematics * Involution (mathematics), a function that is its own inverse * Involution algebra, a *-algebra: a type of algebraic structure * Involute, a construction in the differential geometry of curves * Exponentiati ...
).


Examples

In
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
, an antihomomorphism is a map between two groups that reverses the order of multiplication. So if is a group antihomomorphism, :''φ''(''xy'') = ''φ''(''y'')''φ''(''x'') for all ''x'', ''y'' in ''X''. The map that sends ''x'' to ''x''−1 is an example of a group antiautomorphism. Another important example is the
transpose In linear algebra, the transpose of a Matrix (mathematics), matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix by producing another matrix, often denoted by (among other ...
operation in
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathemat ...
, which takes
row vector In linear algebra, a column vector with elements is an m \times 1 matrix consisting of a single column of entries, for example, \boldsymbol = \begin x_1 \\ x_2 \\ \vdots \\ x_m \end. Similarly, a row vector is a 1 \times n matrix for some , co ...
s to
column vector In linear algebra, a column vector with elements is an m \times 1 matrix consisting of a single column of entries, for example, \boldsymbol = \begin x_1 \\ x_2 \\ \vdots \\ x_m \end. Similarly, a row vector is a 1 \times n matrix for some , c ...
s. Any vector-matrix equation may be transposed to an equivalent equation where the order of the factors is reversed. With matrices, an example of an antiautomorphism is given by the transpose map. Since inversion and transposing both give antiautomorphisms, their composition is an automorphism. This involution is often called the contragredient map, and it provides an example of an outer automorphism of the
general linear group In mathematics, the general linear group of degree n is the set of n\times n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again inve ...
, where ''F'' is a field, except when and , or and (i.e., for the groups , , and ). In ring theory, an antihomomorphism is a map between two rings that preserves addition, but reverses the order of multiplication. So is a ring antihomomorphism if and only if: :''φ''(1) = 1 :''φ''(''x'' + ''y'') = ''φ''(''x'') + ''φ''(''y'') :''φ''(''xy'') = ''φ''(''y'')''φ''(''x'') for all ''x'', ''y'' in ''X''. For
algebras over a field In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition ...
''K'', ''φ'' must be a ''K''-
linear map In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that p ...
of the underlying
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
. If the underlying field has an involution, one can instead ask ''φ'' to be conjugate-linear, as in conjugate transpose, below.


Involutions

It is frequently the case that antiautomorphisms are
involution Involution may refer to: Mathematics * Involution (mathematics), a function that is its own inverse * Involution algebra, a *-algebra: a type of algebraic structure * Involute, a construction in the differential geometry of curves * Exponentiati ...
s, i.e. the square of the antiautomorphism is the
identity map Graph of the identity function on the real numbers In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unc ...
; these are also called s. For example, in any group the map that sends ''x'' to its inverse ''x''−1 is an involutive antiautomorphism. A ring with an involutive antiautomorphism is called a *-ring, and these form an important class of examples.


Properties

If the source ''X'' or the target ''Y'' is commutative, then an antihomomorphism is the same thing as a
homomorphism In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
. The
composition Composition or Compositions may refer to: Arts and literature *Composition (dance), practice and teaching of choreography * Composition (language), in literature and rhetoric, producing a work in spoken tradition and written discourse, to include ...
of two antihomomorphisms is always a homomorphism, since reversing the order twice preserves order. The composition of an antihomomorphism with a homomorphism gives another antihomomorphism.


See also

*
Semigroup with involution In mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, conside ...


References

* {{refend Morphisms