In the mathematical field of
descriptive set theory
In mathematical logic, descriptive set theory (DST) is the study of certain classes of "well-behaved" subsets of the real line and other Polish spaces. As well as being one of the primary areas of research in set theory, it has applications to oth ...
, a subset of a
Polish space
In the mathematical discipline of general topology, a Polish space is a separable completely metrizable topological space; that is, a space homeomorphic to a complete metric space that has a countable dense subset. Polish spaces are so named ...
is an analytic set if it is a
continuous
Continuity or continuous may refer to:
Mathematics
* Continuity (mathematics), the opposing concept to discreteness; common examples include
** Continuous probability distribution or random variable in probability and statistics
** Continuous g ...
image of a Polish space. These sets were first defined by and his student .
Definition
There are several equivalent definitions of analytic set. The following conditions on a
subspace ''A'' of a Polish space ''X'' are equivalent:
*''A'' is analytic.
*''A'' is
empty
Empty may refer to:
Music Albums
* ''Empty'' (God Lives Underwater album) or the title song, 1995
* ''Empty'' (Nils Frahm album), 2020
* ''Empty'' (Tait album) or the title song, 2001
Songs
* "Empty" (The Click Five song), 2007
* ...
or a continuous image of the
Baire space
In mathematics, a topological space X is said to be a Baire space if countable unions of closed sets with empty interior also have empty interior.
According to the Baire category theorem, compact Hausdorff spaces and complete metric spaces are ...
ω
ω.
*''A'' is a
Suslin space
In the mathematical discipline of general topology, a Polish space is a separable completely metrizable topological space; that is, a space homeomorphic to a complete metric space that has a countable dense subset. Polish spaces are so named b ...
, in other words ''A'' is the image of a Polish space under a continuous mapping.
*''A'' is the continuous image of a
Borel set
In mathematics, a Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets are name ...
in a Polish space.
*''A'' is a
Suslin set In mathematics, a Suslin representation of a set of reals (more precisely, elements of Baire space) is a tree whose projection is that set of reals. More generally, a subset ''A'' of ''κ''ω is ''λ''-Suslin if there is a tree ''T'' on ''κ'' × ...
, the image of the
Suslin operation In mathematics, the Suslin operation 𝓐 is an operation that constructs a set from a collection of sets indexed by finite sequences of positive integers.
The Suslin operation was introduced by and . In Russia it is sometimes called the A-operat ...
.
*There is a Polish space
and a
Borel set
such that
is the
projection of
onto
; that is,
:
*''A'' is the projection of a
closed set
In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric spac ...
in the
cartesian product
In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is
: A\ ...
of ''X'' with the Baire space.
*''A'' is the projection of a
Gδ set in the cartesian product of ''X'' with the
Cantor space In mathematics, a Cantor space, named for Georg Cantor, is a topological abstraction of the classical Cantor set: a topological space is a Cantor space if it is homeomorphic to the Cantor set. In set theory, the topological space 2ω is called "t ...
2
ω.
An alternative characterization, in the specific, important, case that
is Baire space ω
ω, is that the analytic sets are precisely the projections of
tree
In botany, a tree is a perennial plant with an elongated stem, or trunk, usually supporting branches and leaves. In some usages, the definition of a tree may be narrower, including only woody plants with secondary growth, plants that are ...
s on
. Similarly, the analytic subsets of Cantor space 2
ω are precisely the projections of trees on
.
Properties
Analytic subsets of Polish spaces are closed under countable unions and intersections, continuous images, and inverse images.
The complement of an analytic set need not be analytic. Suslin proved that if the complement of an analytic set is analytic then the set is Borel. (Conversely any Borel set is analytic and Borel sets are closed under complements.) Luzin proved more generally that any two
disjoint
Disjoint may refer to:
*Disjoint sets, sets with no common elements
*Mutual exclusivity, the impossibility of a pair of propositions both being true
See also
*Disjoint union
*Disjoint-set data structure
{{disambig