Amortized Data Structures
   HOME

TheInfoList



OR:

In
computer science Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, ...
, amortized analysis is a method for analyzing a given algorithm's
complexity Complexity characterizes the behavior of a system or model whose components interact in multiple ways and follow local rules, leading to non-linearity, randomness, collective dynamics, hierarchy, and emergence. The term is generally used to c ...
, or how much of a resource, especially time or memory, it takes to
execute Execution, in capital punishment Capital punishment, also known as the death penalty and formerly called judicial homicide, is the state-sanctioned killing of a person as punishment for actual or supposed misconduct. The sentence (law), s ...
. The motivation for amortized analysis is that looking at the worst-case run time can be too pessimistic. Instead, amortized analysis averages the running times of operations in a sequence over that sequence. As a conclusion: "Amortized analysis is a useful tool that complements other techniques such as worst-case and average-case analysis." For a given operation of an algorithm, certain situations (e.g., input parametrizations or data structure contents) may imply a significant cost in resources, whereas other situations may not be as costly. The amortized analysis considers both the costly and less costly operations together over the whole sequence of operations. This may include accounting for different types of input, length of the input, and other factors that affect its performance.


History

Amortized analysis initially emerged from a method called aggregate analysis, which is now subsumed by amortized analysis. The technique was first formally introduced by
Robert Tarjan Robert Endre Tarjan (born April 30, 1948) is an American computer scientist and mathematician. He is the discoverer of several graph theory algorithms, including his strongly connected components algorithm, and co-inventor of both splay trees a ...
in his 1985 paper ''Amortized Computational Complexity'', which addressed the need for a more useful form of analysis than the common probabilistic methods used. Amortization was initially used for very specific types of algorithms, particularly those involving
binary tree In computer science, a binary tree is a tree data structure in which each node has at most two children, referred to as the ''left child'' and the ''right child''. That is, it is a ''k''-ary tree with . A recursive definition using set theor ...
s and union operations. However, it is now ubiquitous and comes into play when analyzing many other algorithms as well.


Method

Amortized analysis requires knowledge of which series of operations are possible. This is most commonly the case with
data structure In computer science, a data structure is a data organization and storage format that is usually chosen for Efficiency, efficient Data access, access to data. More precisely, a data structure is a collection of data values, the relationships amo ...
s, which have
state State most commonly refers to: * State (polity), a centralized political organization that regulates law and society within a territory **Sovereign state, a sovereign polity in international law, commonly referred to as a country **Nation state, a ...
that persists between operations. The basic idea is that a worst-case operation can alter the state in such a way that the worst case cannot occur again for a long time, thus "amortizing" its cost. There are generally three methods for performing amortized analysis: the aggregate method, the accounting method, and the
potential method In computational complexity theory, the potential method is a method used to analyze the amortized time and space complexity of a data structure, a measure of its performance over sequences of operations that smooths out the cost of infrequent but ...
. All of these give correct answers; the choice of which to use depends on which is most convenient for a particular situation. *Aggregate analysis determines the upper bound ''T''(''n'') on the total cost of a sequence of ''n'' operations, then calculates the amortized cost to be ''T''(''n'') / ''n''. *The accounting method is a form of aggregate analysis which assigns to each operation an ''amortized cost'' which may differ from its actual cost. Early operations have an amortized cost higher than their actual cost, which accumulates a saved "credit" that pays for later operations having an amortized cost lower than their actual cost. Because the credit begins at zero, the actual cost of a sequence of operations equals the amortized cost minus the accumulated credit. Because the credit is required to be non-negative, the amortized cost is an upper bound on the actual cost. Usually, many short-running operations accumulate such credit in small increments, while rare long-running operations decrease it drastically. *The
potential method In computational complexity theory, the potential method is a method used to analyze the amortized time and space complexity of a data structure, a measure of its performance over sequences of operations that smooths out the cost of infrequent but ...
is a form of the accounting method where the saved credit is computed as a function (the "potential") of the state of the data structure. The amortized cost is the immediate cost plus the change in potential.


Examples


Dynamic array

Consider a
dynamic array In computer science, a dynamic array, growable array, resizable array, dynamic table, mutable array, or array list is a random access, variable-size list data structure that allows elements to be added or removed. It is supplied with standard l ...
that grows in size as more elements are added to it, such as in Java or in C++. If we started out with a dynamic array of size 4, we could push 4 elements onto it, and each operation would take
constant time In theoretical computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations p ...
. Yet pushing a fifth element onto that array would take longer as the array would have to create a new array of double the current size (8), copy the old elements onto the new array, and then add the new element. The next three push operations would similarly take constant time, and then the subsequent addition would require another slow doubling of the array size. In general, for an arbitrary number n of pushes to an array of any initial size, the times for steps that double the array add in a
geometric series In mathematics, a geometric series is a series (mathematics), series summing the terms of an infinite geometric sequence, in which the ratio of consecutive terms is constant. For example, 1/2 + 1/4 + 1/8 + 1/16 + ⋯, the series \tfrac12 + \tfrac1 ...
to O(n), while the constant times for each remaining push also add to O(n). Therefore the average time per push operation is O(n)/n = O(1). This reasoning can be formalized and generalized to more complicated data structures using amortized analysis.


Queue

Shown is a Python3 implementation of a queue, a FIFO data structure: class Queue: # Initialize the queue with two empty lists def __init__(self): self.input = [] # Stores elements that are enqueued self.output = [] # Stores elements that are dequeued def enqueue(self, element): self.input.append(element) # Append the element to the input list def dequeue(self): if not self.output: # If the output list is empty # Transfer all elements from the input list to the output list, reversing the order while self.input: # While the input list is not empty self.output.append( self.input.pop() ) # Pop the last element from the input list and append it to the output list return self.output.pop() # Pop and return the last element from the output list The enqueue operation just pushes an element onto the input array; this operation does not depend on the lengths of either input or output and therefore runs in constant time. However the dequeue operation is more complicated. If the output array already has some elements in it, then dequeue runs in constant time; otherwise, dequeue takes time to add all the elements onto the output array from the input array, where ''n'' is the current length of the input array. After copying ''n'' elements from input, we can perform ''n'' dequeue operations, each taking constant time, before the output array is empty again. Thus, we can perform a sequence of ''n'' dequeue operations in only time, which implies that the amortized time of each dequeue operation is . Alternatively, we can charge the cost of copying any item from the input array to the output array to the earlier enqueue operation for that item. This charging scheme doubles the amortized time for enqueue but reduces the amortized time for dequeue to .


Common use

* In common usage, an "amortized algorithm" is one that an amortized analysis has shown to perform well. *
Online algorithm In computer science, an online algorithm is one that can process its input piece-by-piece in a serial fashion, i.e., in the order that the input is fed to the algorithm, without having the entire input available from the start. In contrast, an of ...
s commonly use amortized analysis.


References


Literature

* * {{Use dmy dates, date=June 2019 Analysis of algorithms Articles with example Ruby code