Formation
AlGaInP layer is often grown byProperties
AlGaInP is a semiconductor, which means that its valence band is completely full. The eV of the band gap between the valence band and the conduction band is small enough that it is able to emit visible light (1.7 eV - 3.1 eV). The band gap of AlGaInP is between 1.81 eV and 2 eV. This corresponds to red, orange, or yellow light, and that is why the LEDs made from AlGaInP are those colors.Zinc blende structure
AlGaInP's structure is categorized within a specific unit cell called the zinc blende structure. Zinc blende/sphalerite is based on a face-centered cubic lattice of anions. It has 4 asymmetric units in its unit cell. It is best thought of as a face-centered cubic array of anions and cations occupying one half of the tetrahedral holes. Each ion is 4-coordinate and has local tetrahedral geometry. Zinc blende is its own antitype—you can switch the anion and cation positions in the cell and it has no effect (as in NaCl). In fact, replacement of both the zinc and sulfur with carbon gives the diamond structure.Toreki, Rob. "The Zinc Blende (ZnS) Structure." ''Structure World''. N.p., 30 Mar. 2015. Web.Applications
AlGaInP can be applied to: *Light emitting diodes of high brightness *Diode lasers *Quantum well structures *Solar cells (potential). The use of aluminium gallium indium phosphide with high aluminium content, in a five junction structure, can lead to solar cells with maximum theoretical efficiencies ( solar cell efficiency) above 40%AlGaInP laser
A diode laser consists of a semiconductor material in which a p-n junction forms the active medium and optical feedback is typically provided by reflections at the device facets. AlGaInP diode lasers emit visible and near-infrared light with wavelengths of 0.63-0.76 μm. The primary applications of AlGaInP diode lasers are in optical disc readers, laser pointers, and gas sensors, as well as forLED
AlGaInP can be used as an LED. An LED is composed of a p-n junction which contain a p-type and an n-type. The material used in the semiconducting element of an LED determines its color. AlGaInP is one of type of LEDs used for lighting systems. Another is indium gallium nitride (InGaN). Slight changes in the composition of these alloys changes the color of the emitted light. AlGaInP alloys are used to make red, orange and yellow LEDs. InGaN alloys are used to make green, blue and white LEDs.Safety and toxicity aspects
The toxicology of AlGaInP has not been fully investigated. The dust is an irritant to skin, eyes and lungs. The environment, health and safety aspects of aluminium indium gallium phosphide sources (such as trimethylgallium, trimethylindium and phosphine) and industrial hygiene monitoring studies of standard MOVPE sources have been reported in a review. Illumination by an AlGaInP laser was associated in one study with slower healing of skin wounds in laboratory rats.See also
*References
;Notes * *''High Brightness Light Emitting Diodes'':G. B. Stringfellow and M. George Craford, Semiconductors and Semimetals, vol. 48, pp. 97–226. {{DEFAULTSORT:Aluminium Gallium Indium Phosphide III-V semiconductors Aluminium compounds Gallium compounds Indium compounds Phosphides III-V compounds Light-emitting diode materials Zincblende crystal structure