Almeida–Pineda Recurrent Backpropagation
   HOME

TheInfoList



OR:

Almeida–Pineda recurrent backpropagation is an extension to the
backpropagation In machine learning, backpropagation is a gradient computation method commonly used for training a neural network to compute its parameter updates. It is an efficient application of the chain rule to neural networks. Backpropagation computes th ...
algorithm In mathematics and computer science, an algorithm () is a finite sequence of Rigour#Mathematics, mathematically rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algo ...
that is applicable to
recurrent neural networks Recurrent neural networks (RNNs) are a class of artificial neural networks designed for processing sequential data, such as text, speech, and time series, where the order of elements is important. Unlike feedforward neural networks, which proces ...
. It is a type of
supervised learning In machine learning, supervised learning (SL) is a paradigm where a Statistical model, model is trained using input objects (e.g. a vector of predictor variables) and desired output values (also known as a ''supervisory signal''), which are often ...
. It was described somewhat cryptically in
Richard Feynman Richard Phillips Feynman (; May 11, 1918 – February 15, 1988) was an American theoretical physicist. He is best known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, the physics of t ...
's senior thesis, and rediscovered independently in the context of artificial neural networks by both Fernando Pineda and Luis B. Almeida. A recurrent neural network for this algorithm consists of some input units, some output units and eventually some hidden units. For a given set of (input, target) states, the network is trained to settle into a stable activation state with the output units in the target state, based on a given input state clamped on the input units.


References

Machine learning algorithms Neuroscience {{machine-learning-stub