HOME

TheInfoList



OR:

In the mathematical field of
category theory Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory ...
, an allegory is a category that has some of the structure of the category Rel of sets and
binary relation In mathematics, a binary relation associates some elements of one Set (mathematics), set called the ''domain'' with some elements of another set called the ''codomain''. Precisely, a binary relation over sets X and Y is a set of ordered pairs ...
s between them. Allegories can be used as an abstraction of categories of relations, and in this sense the theory of allegories is a generalization of relation algebra to relations between different sorts. Allegories are also useful in defining and investigating certain constructions in category theory, such as exact completions. In this article we adopt the convention that morphisms compose from right to left, so means "first do , then do ".


Definition

An allegory is a category in which * every morphism R\colon X\to Y is associated with an anti-involution, i.e. a morphism R^\circ\colon Y\to X with R^ = R and (RS)^\circ = S^\circ R^\circ\text and * every pair of morphisms R,S \colon X\to Y with common domain/codomain is associated with an intersection, i.e. a morphism R \cap S\colon X\to Y all such that * intersections are idempotent: R\cap R = R,
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
: R\cap S = S\cap R, and
associative In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for express ...
: (R\cap S)\cap T = R\cap (S\cap T); * anti-involution distributes over intersection: (R\cap S)^\circ = R^\circ \cap S^\circ; * composition is semi-distributive over intersection: R(S\cap T) \subseteq RS\cap RT and (R\cap S)T \subseteq RT\cap ST; and * the modularity law is satisfied: RS \cap T \subseteq (R\cap TS^\circ)S. Here, we are abbreviating using the order defined by the intersection: R \subseteq S means R = R\cap S. A first example of an allegory is the category of sets and relations. The objects of this allegory are sets, and a morphism X \to Y is a binary relation between and . Composition of morphisms is composition of relations, and the anti-involution of R is the converse relation R^\circ: y R^\circ x if and only if xRy. Intersection of morphisms is (set-theoretic)
intersection In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, their ...
of relations.


Regular categories and allegories


Allegories of relations in regular categories

In a category , a relation between objects and is a span of morphisms X\gets R\to Y that is jointly monic. Two such spans X\gets S\to Y and X\gets T\to Y are considered equivalent when there is an isomorphism between and that make everything commute; strictly speaking, relations are only defined up to equivalence (one may formalise this either by using equivalence classes or by using bicategories). If the category has products, a relation between and is the same thing as a monomorphism into (or an equivalence class of such). In the presence of pullbacks and a proper factorization system, one can define the composition of relations. The composition X\gets R\to Y\gets S\to Z is found by first pulling back the cospan R\to Y\gets S and then taking the jointly-monic image of the resulting span X\gets R\gets\bullet\to S\to Z. Composition of relations will be associative if the factorization system is appropriately stable. In this case, one can consider a category , with the same objects as , but where morphisms are relations between the objects. The identity relations are the diagonals X \to X\times X. A regular category (a category with finite limits and images in which covers are stable under pullback) has a stable regular epi/mono factorization system. The category of relations for a regular category is always an allegory. Anti-involution is defined by turning the source/target of the relation around, and intersections are intersections of
subobject In category theory, a branch of mathematics, a subobject is, roughly speaking, an object that sits inside another object in the same category. The notion is a generalization of concepts such as subsets from set theory, subgroups from group theory ...
s, computed by pullback.


Maps in allegories, and tabulations

A morphism in an allegory is called a map if it is entire (1\subseteq R^\circ R) and deterministic (RR^\circ \subseteq 1). Another way of saying this is that a map is a morphism that has a right adjoint in when is considered, using the local order structure, as a 2-category. Maps in an allegory are closed under identity and composition. Thus, there is a subcategory of with the same objects but only the maps as morphisms. For a regular category , there is an isomorphism of categories C \cong \operatorname(\operatorname(C)). In particular, a morphism in is just an ordinary
set function In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line \R \cup \, which consists of the real numbers \R ...
. In an allegory, a morphism R\colon X\to Y is tabulated by a pair of maps f\colon Z\to X and g\colon Z\to Y if gf^\circ = R and f^\circ f \cap g^\circ g = 1. An allegory is called tabular if every morphism has a tabulation. For a regular category , the allegory is always tabular. On the other hand, for any tabular allegory , the category of maps is a locally regular category: it has pullbacks, equalizers, and images that are stable under pullback. This is enough to study relations in , and in this setting, A\cong \operatorname(\operatorname(A)).


Unital allegories and regular categories of maps

A unit in an allegory is an object for which the identity is the largest morphism U\to U, and such that from every other object, there is an entire relation to . An allegory with a unit is called unital. Given a tabular allegory , the category is a regular category (it has a terminal object) if and only if is unital.


More sophisticated kinds of allegory

Additional properties of allegories can be axiomatized. Distributive allegories have a union-like operation that is suitably well-behaved, and division allegories have a generalization of the division operation of relation algebra. Power allegories are distributive division allegories with additional
powerset In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is po ...
-like structure. The connection between allegories and regular categories can be developed into a connection between power allegories and toposes.


References

* * {{Authority control Category theory Mathematical relations