Ahlfors Measure Conjecture
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the Ahlfors conjecture, now a
theorem In mathematics and formal logic, a theorem is a statement (logic), statement that has been Mathematical proof, proven, or can be proven. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to esta ...
, states that the limit set of a finitely generated
Kleinian group In mathematics, a Kleinian group is a discrete subgroup of the group (mathematics), group of orientation-preserving Isometry, isometries of hyperbolic 3-space . The latter, identifiable with PSL(2,C), , is the quotient group of the 2 by 2 complex ...
is either the whole
Riemann sphere In mathematics, the Riemann sphere, named after Bernhard Riemann, is a Mathematical model, model of the extended complex plane (also called the closed complex plane): the complex plane plus one point at infinity. This extended plane represents ...
, or has
measure zero In mathematical analysis, a null set is a Lebesgue measurable set of real numbers that has Lebesgue measure, measure zero. This can be characterized as a set that can be Cover (topology), covered by a countable union of Interval (mathematics), ...
. The
conjecture In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis or Fermat's conjecture (now a theorem, proven in 1995 by Andrew Wiles), ha ...
was introduced by , who proved it in the case that the Kleinian group has a
fundamental domain Given a topological space and a group acting on it, the images of a single point under the group action form an orbit of the action. A fundamental domain or fundamental region is a subset of the space which contains exactly one point from each ...
with a finite number of sides. proved the Ahlfors conjecture for topologically tame groups, by showing that a topologically tame Kleinian group is geometrically tame, so the Ahlfors conjecture follows from Marden's tameness conjecture that hyperbolic 3-manifolds with finitely generated fundamental groups are topologically tame (
homeomorphic In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function betw ...
to the interior of compact ). This latter conjecture was proved, independently, by and by . also showed that in the case when the limit set is the whole sphere, the action of the Kleinian group on the limit set is ergodic.


References

* * * * Kleinian groups Theorems in mathematical analysis Conjectures that have been proved {{Group-theory-stub