Adrien-Marie Legendre (; ; 18 September 1752 – 9 January 1833) was a French mathematician who made numerous contributions to mathematics. Well-known and important concepts such as the Legendre polynomials and Legendre transformation are named after him.
Life
Adrien-Marie Legendre was born in
Paris
Paris () is the capital and most populous city of France, with an estimated population of 2,165,423 residents in 2019 in an area of more than 105 km² (41 sq mi), making it the 30th most densely populated city in the world in 2020. ...
on 18 September 1752 to a wealthy family. He received his education at the
Collège Mazarin Mazarin may refer to:
*Cardinal Mazarin, 17th-century minister to the French king
*Rethel, formerly the Duchy of Mazarin, a commune in France
* Mazarin River, a river in Canada
* ''Mazarin'' (album), a 2003 pop music album
See also
*"The Adventure ...
in Paris, and defended his thesis in physics and mathematics in 1770. He taught at the École Militaire in Paris from 1775 to 1780 and at the École Normale from 1795. At the same time, he was associated with the Bureau des Longitudes. In 1782, the Berlin Academy awarded Legendre a prize for his treatise on projectiles in resistant media. This treatise also brought him to the attention of
Fellow of the Royal Society
Fellowship of the Royal Society (FRS, ForMemRS and HonFRS) is an award granted by the judges of the Royal Society of London to individuals who have made a "substantial contribution to the improvement of natural knowledge, including mathematic ...
Paris Observatory
The Paris Observatory (french: Observatoire de Paris ), a research institution of the Paris Sciences et Lettres University, is the foremost astronomical observatory of France, and one of the largest astronomical centers in the world. Its histor ...
and the
Royal Greenwich Observatory
The Royal Observatory, Greenwich (ROG; known as the Old Royal Observatory from 1957 to 1998, when the working Royal Greenwich Observatory, RGO, temporarily moved south from Greenwich to Herstmonceux) is an observatory situated on a hill in G ...
by means of trigonometry. To this end in 1787 he visited Dover and London together with
number theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Math ...
completed that of Legendre. He developed, and first communicated to his contemporaries before Gauss, the
least squares
The method of least squares is a standard approach in regression analysis to approximate the solution of overdetermined systems (sets of equations in which there are more equations than unknowns) by minimizing the sum of the squares of the res ...
method which has broad application in
linear regression
In statistics, linear regression is a linear approach for modelling the relationship between a scalar response and one or more explanatory variables (also known as dependent and independent variables). The case of one explanatory variable is call ...
,
signal processing
Signal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing '' signals'', such as sound, images, and scientific measurements. Signal processing techniques are used to optimize transmissions, ...
gamma function
In mathematics, the gamma function (represented by , the capital letter gamma from the Greek alphabet) is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except th ...
s, introducing the symbol Γ normalizing it to Γ(n+1) = n!. Further results on the beta and gamma functions along with their applications to mechanics – such as the rotation of the earth, and the attraction of ellipsoids – appeared in the second volume. In 1830, he gave a proof of
Fermat's Last Theorem
In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers , , and satisfy the equation for any integer value of greater than 2. The cases and have bee ...
for exponent ''n'' = 5, which was also proven by Lejeune Dirichlet in 1828.
In
number theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Math ...
, he conjectured the quadratic reciprocity law, subsequently proved by Gauss; in connection to this, the
Legendre symbol
In number theory, the Legendre symbol is a multiplicative function with values 1, −1, 0 that is a quadratic character modulo an odd prime number ''p'': its value at a (nonzero) quadratic residue mod ''p'' is 1 and at a non-quadratic residu ...
is named after him. He also did pioneering work on the distribution of primes, and on the application of analysis to number theory. His 1798 conjecture of the
prime number theorem
In mathematics, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying ...
Lagrangian
Lagrangian may refer to:
Mathematics
* Lagrangian function, used to solve constrained minimization problems in optimization theory; see Lagrange multiplier
** Lagrangian relaxation, the method of approximating a difficult constrained problem with ...
classical mechanics
Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical ...
. In
thermodynamics
Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws o ...
Gibbs
Gibbs or GIBBS is a surname and acronym. It may refer to:
People
* Gibbs (surname)
Places
* Gibbs (crater), on the Moon
* Gibbs, Missouri, US
* Gibbs, Tennessee, US
* Gibbs Island (South Shetland Islands), Antarctica
* 2937 Gibbs, an asteroid
...
American Academy of Arts and Sciences
The American Academy of Arts and Sciences (abbreviation: AAA&S) is one of the oldest learned societies in the United States. It was founded in 1780 during the American Revolution by John Adams, John Hancock, James Bowdoin, Andrew Oliver, ...
(1832)
*The Moon crater Legendre is named after him.
*Main-belt asteroid
26950 Legendre
__NOTOC__
Year 695 ( DCXCV) was a common year starting on Friday (link will display the full calendar) of the Julian calendar. The denomination 695 for this year has been used since the early medieval period, when the Anno Domini calendar era b ...
is named after him.
*Legendre is one of the 72 prominent French scientists who were commemorated on plaques at the first stage of the
Eiffel Tower
The Eiffel Tower ( ; french: links=yes, tour Eiffel ) is a wrought-iron lattice tower on the Champ de Mars in Paris, France. It is named after the engineer Gustave Eiffel, whose company designed and built the tower.
Locally nickname ...
Associated Legendre polynomials
In mathematics, the associated Legendre polynomials are the canonical solutions of the general Legendre equation
\left(1 - x^2\right) \frac P_\ell^m(x) - 2 x \frac P_\ell^m(x) + \left \ell (\ell + 1) - \frac \rightP_\ell^m(x) = 0,
or equivalently ...
*
Gauss–Legendre algorithm The Gauss–Legendre algorithm is an algorithm to compute the digits of . It is notable for being rapidly convergent, with only 25 iterations producing 45 million correct digits of . However, it has some drawbacks (for example, it is computer ...
Legendre's equation
In mathematics, Legendre's equation is the Diophantine equation
ax^2+by^2+cz^2=0.
The equation is named for Adrien-Marie Legendre who proved in 1785 that it is solvable in integers ''x'', ''y'', ''z'', not all zero, if and only if
−''bc'', ...
Legendre symbol
In number theory, the Legendre symbol is a multiplicative function with values 1, −1, 0 that is a quadratic character modulo an odd prime number ''p'': its value at a (nonzero) quadratic residue mod ''p'' is 1 and at a non-quadratic residu ...
Least squares
The method of least squares is a standard approach in regression analysis to approximate the solution of overdetermined systems (sets of equations in which there are more equations than unknowns) by minimizing the sum of the squares of the res ...