Adrenomedullin
   HOME

TheInfoList



OR:

Adrenomedullin (ADM) is a
peptide hormone Peptide hormones are hormones composed of peptide molecules. These hormones influence the endocrine system of animals, including humans. Most hormones are classified as either amino-acid-based hormones (amines, peptides, or proteins) or steroid h ...
that plays an important role in various physiological processes throughout the human body. Initially discovered in 1993 from a pheochromocytoma, a tumor of the
adrenal medulla The adrenal medulla () is the inner part of the adrenal gland. It is located at the center of the gland, being surrounded by the adrenal cortex. It is the innermost part of the adrenal gland, consisting of chromaffin cells that secrete catecho ...
, this 52-amino acid peptide is now recognized for its diverse effects, including
vasodilation Vasodilation, also known as vasorelaxation, is the widening of blood vessels. It results from relaxation of smooth muscle cells within the vessel walls, in particular in the large veins, large arteries, and smaller arterioles. Blood vessel wa ...
, regulation of blood pressure, and maintenance of the vascular system. ADM is widely expressed in tissues and also found in the circulation, exerting its influence on the cardiovascular,
lymphatic Lymph () is the fluid that flows through the lymphatic system, a system composed of lymph vessels (channels) and intervening lymph nodes whose function, like the venous system, is to return fluid from the tissues to be recirculated. At the origi ...
, and
endocrine The endocrine system is a messenger system in an organism comprising feedback loops of hormones that are released by internal glands directly into the circulatory system and that target and regulate distant organs. In vertebrates, the hypotha ...
systems, as well as demonstrating anti-inflammatory and tissue-protective properties. In humans ADM is encoded by the ''ADM''
gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
. A similar peptide named adreomedullin2 was reported in rats in 2004 which exhibits a similar function.


Structure

The human ADM gene is localized to a single locus on Chromosome 11 with 4 exons and 3 introns. The ADM gene initially codes for a 185-amino acid precursor peptide, that can be differentially excised to form a number of peptides, including an inactive 53-amino acid AM, e PAMP, adrenotensin and ADM95-146. Mature human ADM is activated to form a 52 amino acid, 6-amino acid ring, that shares moderate structural similarity to the calcitonin family of regulatory peptides (calcitonin, CGRP and amylin). Circulating ADM consists of both amidated active form (15%) and the glycated inactive form (85%). It has a plasma half-life of 22min, mean clearance rate of 27.4 mL/kg/min, and apparent volume of distribution of 880 ± 150 mL/kg. Adrenomedullin consists of 52 amino acids, has 1 intramolecular disulfide bond, and shows a slight homology with the
calcitonin gene-related peptide Calcitonin gene-related peptide (CGRP) is a neuropeptide that belongs to the calcitonin family. Human CGRP consists of two Protein isoform, isoforms, CGRP alpha (α-CGRP, also known as CGRP I) and CGRP beta (β-CGRP, also known as CGRP II). α-C ...
(CGRP). The precursor, called preproadrenomedullin, consists of 185 amino acids and can be cleaved by plasma kallikrein at the Lys-Arg and Arg-Arg sites. By RNA-blot analysis, human adrenomedullin mRNA was found to be expressed in all tissues, and most highly expressed in the placenta, fat cells, lung, pancreatic islets, smooth muscle, and skin.


Function

Adrenomedullin (ADM) is a multifunctional peptide hormone that plays an important role in the
homeostasis In biology, homeostasis (British English, British also homoeostasis; ) is the state of steady internal physics, physical and chemistry, chemical conditions maintained by organism, living systems. This is the condition of optimal functioning fo ...
of the
cardiovascular system In vertebrates, the circulatory system is a system of organs that includes the heart, blood vessels, and blood which is circulated throughout the body. It includes the cardiovascular system, or vascular system, that consists of the heart a ...
and in inflammatory response. It acts as a potent
vasodilator Vasodilation, also known as vasorelaxation, is the widening of blood vessels. It results from relaxation of smooth muscle cells within the vessel walls, in particular in the large veins, large arteries, and smaller arterioles. Blood vessel wal ...
, regulating
vascular tone Vascular resistance is the resistance that must be overcome for blood to flow through the circulatory system. The resistance offered by the systemic circulation is known as the systemic vascular resistance or may sometimes be called by another ter ...
and blood pressure through both
endothelium The endothelium (: endothelia) is a single layer of squamous endothelial cells that line the interior surface of blood vessels and lymphatic vessels. The endothelium forms an interface between circulating blood or lymph in the lumen and the r ...
-dependent and independent mechanisms. ADM exerts protective effects on the cardiovascular system by inhibiting
apoptosis Apoptosis (from ) is a form of programmed cell death that occurs in multicellular organisms and in some eukaryotic, single-celled microorganisms such as yeast. Biochemistry, Biochemical events lead to characteristic cell changes (Morphology (biol ...
in
endothelial cell The endothelium (: endothelia) is a single layer of squamous endothelial cells that line the interior surface of blood vessels and lymphatic vessels. The endothelium forms an interface between circulating blood or lymph in the lumen and th ...
s, reducing
oxidative stress Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to readily detoxify the reactive intermediates or to repair the resulting damage. Disturbances in the normal ...
, and regulating
vascular smooth muscle Vascular smooth muscle is the type of smooth muscle that makes up most of the walls of blood vessels. Structure Vascular smooth muscle refers to the particular type of smooth muscle found within, and composing the majority of the wall of blood v ...
cell proliferation. In the heart, it increases cardiac output and augments
myocardial contractility Myocardial contractility represents the innate ability of the heart muscle ( cardiac muscle or myocardium) to contract. It is the maximum attainable value for the force of contraction of a given heart. The ability to produce changes in force during ...
. Beyond its cardiovascular functions, ADM demonstrates significant anti-inflammatory properties, modulating
cytokine Cytokines () are a broad and loose category of small proteins (~5–25 kDa) important in cell signaling. Cytokines are produced by a broad range of cells, including immune cells like macrophages, B cell, B lymphocytes, T cell, T lymphocytes ...
production and secretion in
macrophage Macrophages (; abbreviated MPhi, φ, MΦ or MP) are a type of white blood cell of the innate immune system that engulf and digest pathogens, such as cancer cells, microbes, cellular debris and foreign substances, which do not have proteins that ...
s. It also contributes to the maintenance of vascular integrity, potentially reducing vascular permeability during inflammatory conditions. In addition, ADM has been implicated in
angiogenesis Angiogenesis is the physiological process through which new blood vessels form from pre-existing vessels, formed in the earlier stage of vasculogenesis. Angiogenesis continues the growth of the vasculature mainly by processes of sprouting and ...
, protection of organs, and tissue repair. Hence because of it;s wide ranging effects, it has potential therapeutic applications in a variety of diseases, including inflammatory bowel disease, sepsis, and cardiovascular disorders.


Receptors

Adrenomedullin (AM) exerts its actions through combinations of the calcitonin receptor like receptor ( CALCRL) or CLR; and either ( Receptor activity-modifying protein) 2 ( RAMP2) or RAMP3, (known as AM1 and AM2 receptors respectively). Both transduce the hormone binding to intracellular signaling via second messenger cascades. The AM2 receptor has a low affinity for CGRP, but this is of no physiological relevance. Unlike the classical one ligand-one receptor notion of receptor signalling, the interaction of both CALCRL and RAMP at the membrane is required for AM to mediate its action: neither can bind the hormone (and therefore transduce a signal) alone. Stimulation by AM of its receptor increases production of both cyclic AMP (cAMP) and nitric oxide. Before the discovery of the RAMPs and the identification of heteromeric receptors for the calcitonin family of peptides, a single G Protein coupled Adrenomedullin receptor was identified, but more recent reports have cast doubts as to its importance in the major effects of adrenomedullin. In more recent research, the roles of the AM1 and AM2 receptors have been clarified through studies in genetically manipulated mice. The adrenomedullin knockout is an embryonic lethal phenotype and dies mid gestation from a condition known as hydrops fetalis. The CALCRL or CLR KO mouse recapitulates the same phenotype, as it lacks both the AM1 and AM2 receptors (incidentally confirming the lack of physiological significance for the earlier single protein AM receptor discovered by Kapas). RAMP2 KO mice also recapitulates the same phenotype showing that major physiological effects of AM are transduced by the AM1 receptor. Even the heterozygote RAMP 2 mice have disturbed physiology with unusual bone and mammary gland defects, and very aberrant endocrinology, leading to poor fertility and lactation problems. What is very surprising is that the effect of deletion of RAMP3 has no deleterious effects and seems to confer advantages due to higher than normal bone mass, and reduced weight gain in older age.


Clinical significance


Cardiovascular health

While AM could be an important biomarker for bacterial infections like sepsis, AM has diminished value in its utility for cardiovascular diseases (CVD) attributable to its minimal increase in these conditions and reduced half-life. AM is associated with controlling vascular integrity, blood pressure, and general cardiovascular function. Since AM has been noted for its exacerbated levels in intense diseases with an elevated concern for mortality, AM could still have some value as a predictive biomarker of harmful clinical consequences for an array of cardiovascular illnesses. AM has conservatory effects against arteriosclerosis and vascular harm. Extended AM administration or hyper-expression of its target gene in rodent model organisms diminishes vascular hyperplasia, fatty streak construction, and intimal expansion. AM also has angiogenic characteristics, leading to organ and tissue maintenance by reducing the risk for ischemic diseases. AM binds to particular receptors like calcitonin gene-related peptide (CGRP) receptors, which affects the cardiovascular system by contributing to vasodilation as well as elevated heart rate and blood pressure.


Gastrointestinal health

AM function can be compared to another peptide called pro-adrenomedullin N-terminal 20 peptide (PAMP), which both originate from a common precursor leading to angiogenesis, vasodilation, and anti-inflammatory processes These two peptides are expressed in the gastrointestinal (GI) tract at a mass level, serving as GI hormones controlling processes like insulin secretion and gastric emptying. Past studies reveal that AM and PAMP also impact gut microbiome composition by fostering the development of beneficial bacteria (i.e., ''Bifidobacterium'' and ''Lactobacillus)'' and diminishing detrimental microbes.


Sepsis

AM concentrations are substantially elevated during intense inflammation from disorders like sepsis, rendering AM a potentially viable therapeutic agent and clinical mode of monitoring such inflammation. AM contributes to vasodilation, which could be detrimental in leading to septic shock. Researchers seek to mitigate this effect while maintaining ADM's antimicrobial, anti-inflammatory, and endothelial-protective characteristics by employing antibodies that bind to ADM's N-terminus or co-administering ADM with ADM-binding protein-1, which collectively extend ADM's half-life and increase its maintenance role while minimizing this detrimental vasodilation. While AM has been discussed in regard to its implications for bacterial infections, such as sepsis, prior research explores its potential connection to viral infections too. This annunciates the importance of continual investigation into AM's mechanisms with viral illnesses through exploring its roles in inflammation and immune regulation.


Tumor angiogenesis

AM contributes to tumor angiogenesis given its capability to enhance smooth muscle and vascular endothelial cell development in addition to its role in ischemic revascularization. Similarly to other solid tumors, AM expression is increased by hypoxia, which has been regarded as an important regulator of tumor development with respect to the findings from animal and in vitro studies, although the translation application to human tumor development is constrained. AM is affiliated with endothelium-derived CC chemokine ligand 2 (CCL2) in the tumor microenvironment, employing genetic deletions and in vivo models to display functional associations. Tumor-derived AM stimulates angiogenesis and promotes tumor growth. Also, endothelial-derived CCL2 decreased AM-induced tumor growth. Deprivation of the AM receptor CALCRL or the G-protein Gs in endothelial cells diminishes both tumor and endothelial cell growth. Removing tumor cell CCR2 or endothelial CCL2 would undo this tumor growth decrease demonstrated in mice without endothelial CALCRL or Gs, displaying a reciprocal regulatory loop between AM and CCL2. AM contributes to cancer pathogenesis through heightened vascularization to equip tumors with nutrients and oxygen, more intense cell phenotypes, and increased cell proliferation. AM receptors (AM1 and AM2) have disparate effects in an array of cancers, with separate regulatory mechanisms and expression patterns. Preclinical studies have displayed the potential of AM receptor antagonists and AM-neutralizing antibodies to diminish tumor growth, angiogenesis, and metastasis.


References


Further reading

* * *


External links

* * {{Growth factor receptor modulators Endocrinology Genes on human chromosome 11