System
This system differs from other systems in that it uses financial text as one of its key means of predicting stock price movement. This reduces the information lag-time problem evident in many similar systems where new information must be transcribed (e.g., such as losing a costly court battle or having a product recall), before the quant can react appropriately. AZFinText overcomes these limitations by utilizing the terms used in financial news articles to predict future stock prices twenty minutes after the news article has been released. It is believed that certain article terms can move stocks more than others. Terms such as ''factory exploded'' or ''workers strike'' will have a depressing effect on stock prices whereas terms such as ''earnings rose'' will tend to increase stock prices. When a human trading expert sees certain terms, they will react in a somewhat predictable fashion. AZFinText capitalizes on the arbitrage opportunities that exist when investment experts over and under-react to certain news stories. By analyzing breaking financial news articles and focusing on specific parts of speech, portfolio selection, term weighting and even article sentiment, the AZFinText system becomes a powerful tool and is a radically different way of looking at stock market prediction.Overview of research
The foundation of AZFinText can be found in the ACM TOIS article. Within this paper, the authors tested several different prediction models and linguistic textual representations. From this work, it was found that using the article terms and the price of the stock at the time the article was released was the most effective model and using proper nouns was the most effective textual representation technique. Combining the two, AZFinText netted a 2.84% trading return over the five-week study period. AZFinText was then extended to study what combination of peer organizations help to best train the system. Using the premise that IBM has more in common with Microsoft than GM, AZFinText studied the effect of varying peer-based training sets. To do this, AZFinText trained on the various levels of GICS and evaluated the results. It was found that sector-based training was most effective, netting an 8.50% trading return, outperformingNotable publicity
AZFinText has been the topic of discussion by numerous media outlets. Some of the more notable ones include '' The Wall Street Journal'', '' MIT's Technology Review'', Dow Jones Newswire, WBIR in Knoxville, TN, Slashdot and other media outlets.References
{{reflistExternal links