In
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, the order-8 triangular tiling is a
regular tiling
Euclidean plane tilings by convex regular polygons have been widely used since antiquity. The first systematic mathematical treatment was that of Kepler in his '' Harmonices Mundi'' (Latin: ''The Harmony of the World'', 1619).
Notation of Euc ...
of the
hyperbolic plane
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:
:For any given line ''R'' and point ''P'' ...
. It is represented by
Schläfli symbol
In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations.
The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to mor ...
of ', having eight regular
triangle
A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC.
In Euclidean geometry, any three points, when non- colli ...
s around each vertex.
Uniform colorings
The half symmetry
+,8,3">+,8,3=
4,3,3)can be shown with alternating two colors of triangles:
:
Symmetry

From
4,4,4)symmetry, there are 15 small index subgroups (7 unique) by mirror removal and alternation operators. Mirrors can be removed if its branch orders are all even, and cuts neighboring branch orders in half. Removing two mirrors leaves a half-order gyration point where the removed mirrors met. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors. Adding 3 bisecting mirrors across each fundamental domains creates
832 symmetry
In geometry, the truncated trioctagonal tiling is a semiregular tiling of the hyperbolic plane. There are one square, one hexagon, and one hexadecagon (16-sides) on each vertex. It has Schläfli symbol of ''tr''.
Symmetry
The dual of this tili ...
. The
subgroup index In mathematics, specifically group theory, the index of a subgroup ''H'' in a group ''G'' is the
number of left cosets of ''H'' in ''G'', or equivalently, the number of right cosets of ''H'' in ''G''.
The index is denoted , G:H, or :H/math> or ( ...
-8 group,
+,4,1+,4,1+,4)">1+,4,1+,4,1+,4)(222222) is the
commutator subgroup
In mathematics, more specifically in abstract algebra, the commutator subgroup or derived subgroup of a group is the subgroup generated by all the commutators of the group.
The commutator subgroup is important because it is the smallest normal ...
of
4,4,4)
A larger subgroup is constructed
*)">4,4,4*) index 8, as (2*2222) with gyration points removed, becomes (*22222222).
The symmetry can be doubled to
842 symmetry
In geometry, the truncated tetraoctagonal tiling is a semiregular tiling of the hyperbolic plane. There are one square, one octagon, and one hexakaidecagon on each vertex. It has Schläfli symbol of tr.
Dual tiling
Symmetry
There are 15 sub ...
by adding a bisecting mirror across the fundamental domains. The symmetry can be extended by 6, as
832 symmetry
In geometry, the truncated trioctagonal tiling is a semiregular tiling of the hyperbolic plane. There are one square, one hexagon, and one hexadecagon (16-sides) on each vertex. It has Schläfli symbol of ''tr''.
Symmetry
The dual of this tili ...
, by 3 bisecting mirrors per domain.
Related polyhedra and tilings

From a
Wythoff construction
In geometry, a Wythoff construction, named after mathematician Willem Abraham Wythoff, is a method for constructing a uniform polyhedron or plane tiling. It is often referred to as Wythoff's kaleidoscopic construction.
Construction process
...
there are ten hyperbolic
uniform tilings
A uniform is a variety of clothing worn by members of an organization while participating in that organization's activity. Modern uniforms are most often worn by armed forces and paramilitary organizations such as police, emergency services, s ...
that can be based from the regular octagonal and order-8 triangular tilings.
Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 10 forms.
It can also be generated from the (4 3 3) hyperbolic tilings:
See also
*
Order-8 tetrahedral honeycomb
*
Tilings of regular polygons
Euclidean plane tilings by convex regular polygons have been widely used since antiquity. The first systematic mathematical treatment was that of Kepler in his '' Harmonices Mundi'' ( Latin: ''The Harmony of the World'', 1619).
Notation of ...
*
List of uniform planar tilings
This table shows the 11 convex uniform tilings (regular and semiregular) of the Euclidean plane, and their dual tilings.
There are three regular and eight semiregular tilings in the plane. The semiregular tilings form new tilings from their dua ...
*
List of regular polytopes
This article lists the regular polytopes and regular polytope compounds in Euclidean, spherical and hyperbolic spaces.
The Schläfli symbol describes every regular tessellation of an ''n''-sphere, Euclidean and hyperbolic spaces. A Schläfl ...
References
*
John H. Conway
John Horton Conway (26 December 1937 – 11 April 2020) was an English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He also made contributions to many branch ...
, Heidi Burgiel, Chaim Goodman-Strass, ''The Symmetries of Things'' 2008, (Chapter 19, The Hyperbolic Archimedean Tessellations)
*
External links
*
*
Hyperbolic and Spherical Tiling Gallery*
ttp://www.plunk.org/~hatch/HyperbolicTesselations Hyperbolic Planar Tessellations, Don Hatch
{{Tessellation
Hyperbolic tilings
Isogonal tilings
Isohedral tilings
Order-8 tilings
Regular tilings
Triangular tilings