21cm Line
   HOME

TheInfoList



OR:

The hydrogen line, 21 centimeter line, or H I line is a
spectral line A spectral line is a weaker or stronger region in an otherwise uniform and continuous spectrum. It may result from emission (electromagnetic radiation), emission or absorption (electromagnetic radiation), absorption of light in a narrow frequency ...
that is created by a change in the energy state of
solitary Solitary is the state of being alone or in solitude. The term may refer to: * ''Solitary'' (album), 2008 album by Don Dokken * ''Solitary'' (2020 film), a British sci-fi thriller film * ''Solitary'' (upcoming film), an American drama film * "S ...
,
electrically neutral Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other an ...
hydrogen atom A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral hydrogen atom contains a single positively charged proton in the nucleus, and a single negatively charged electron bound to the nucleus by the Coulomb for ...
s. It is produced by a
spin Spin or spinning most often refers to: * Spin (physics) or particle spin, a fundamental property of elementary particles * Spin quantum number, a number which defines the value of a particle's spin * Spinning (textiles), the creation of yarn or thr ...
-flip transition, which means the direction of the electron's spin is reversed relative to the spin of the proton. This is a
quantum state In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a prediction for the system ...
change between the two hyperfine levels of the hydrogen 1 s
ground state The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state ...
. The
electromagnetic radiation In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength ...
producing this line has a
frequency Frequency is the number of occurrences of a repeating event per unit of time. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio ...
of (1.42 GHz), which is equivalent to a
wavelength In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
of in a
vacuum A vacuum (: vacuums or vacua) is space devoid of matter. The word is derived from the Latin adjective (neuter ) meaning "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressur ...
. According to the
Planck–Einstein relation The Planck relationFrench & Taylor (1978), pp. 24, 55.Cohen-Tannoudji, Diu & Laloë (1973/1977), pp. 10–11. (referred to as Planck's energy–frequency relation,Schwinger (2001), p. 203. the Planck–Einstein relation, Planck equation, and Plan ...
, the
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
emitted by this transition has an
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
of []. The constant of proportionality, , is known as the
Planck constant The Planck constant, or Planck's constant, denoted by h, is a fundamental physical constant of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a ...
. The hydrogen line frequency lies in the L band, which is located in the lower end of the microwave region of the
electromagnetic spectrum The electromagnetic spectrum is the full range of electromagnetic radiation, organized by frequency or wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band. From low to high ...
. It is frequently observed in
radio astronomy Radio astronomy is a subfield of astronomy that studies Astronomical object, celestial objects using radio waves. It started in 1933, when Karl Jansky at Bell Telephone Laboratories reported radiation coming from the Milky Way. Subsequent observat ...
because those
radio wave Radio waves (formerly called Hertzian waves) are a type of electromagnetic radiation with the lowest frequencies and the longest wavelengths in the electromagnetic spectrum, typically with frequencies below 300 gigahertz (GHz) and wavelengths g ...
s can penetrate the large clouds of interstellar
cosmic dust Cosmic dustalso called extraterrestrial dust, space dust, or star dustis dust that occurs in outer space or has fallen onto Earth. Most cosmic dust particles measure between a few molecules and , such as micrometeoroids (30 μm). Cosmic dust can ...
that are
opaque Opacity is the measure of impenetrability to electromagnetic or other kinds of radiation, especially visible light. In radiative transfer, it describes the absorption and scattering of radiation in a medium, such as a plasma, dielectric, shie ...
to
visible light Light, visible light, or visible radiation is electromagnetic radiation that can be perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400–700 nanometres (nm ...
. The existence of this line was predicted by Dutch astronomer H. van de Hulst in 1944, then directly observed by E. M. Purcell and his student H. I. Ewen in 1951. Observations of the hydrogen line have been used to reveal the spiral shape of the
Milky Way The Milky Way or Milky Way Galaxy is the galaxy that includes the Solar System, with the name describing the #Appearance, galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars in other arms of the galax ...
, to calculate the mass and dynamics of individual galaxies, and to test for changes to the
fine-structure constant In physics, the fine-structure constant, also known as the Sommerfeld constant, commonly denoted by (the Alpha, Greek letter ''alpha''), is a Dimensionless physical constant, fundamental physical constant that quantifies the strength of the el ...
over time. It is of particular importance to
cosmology Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe, the cosmos. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', with the meaning of "a speaking of the wo ...
because it can be used to study the early Universe. Due to its fundamental properties, this line is of interest in the
search for extraterrestrial intelligence The search for extraterrestrial intelligence (usually shortened as SETI) is an expression that refers to the diverse efforts and scientific projects intended to detect extraterrestrial signals, or any evidence of intelligent life beyond Earth. ...
. This line is the theoretical basis of the
hydrogen maser A hydrogen maser, also known as hydrogen frequency standard, is a specific type of maser that uses the intrinsic properties of the hydrogen atom to serve as a precision frequency reference. Overview Both the proton and electron of a hydrogen ato ...
.


Cause

An atom of neutral hydrogen consists of an
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
bound to a
proton A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
. The lowest stationary energy state of the bound electron is called its
ground state The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state ...
. Both the electron and the proton have intrinsic
magnetic dipole moment In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude ...
s ascribed to their
spin Spin or spinning most often refers to: * Spin (physics) or particle spin, a fundamental property of elementary particles * Spin quantum number, a number which defines the value of a particle's spin * Spinning (textiles), the creation of yarn or thr ...
, whose interaction results in a slight increase in energy when the spins are parallel, and a decrease when antiparallel. The fact that only parallel and antiparallel states are allowed is a result of the
quantum mechanical Quantum mechanics is the fundamental physical theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is the foundation of a ...
discretization of the total
angular momentum Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of Momentum, linear momentum. It is an important physical quantity because it is a Conservation law, conserved quantity – the total ang ...
of the system. When the spins are parallel, the magnetic dipole moments are antiparallel (because the electron and proton have opposite charge), thus one would expect this configuration to actually have ''lower energy'' just as two magnets will align so that the north pole of one is closest to the south pole of the other. This logic fails here because the wave functions of the electron and the proton overlap; that is, the electron is not spatially displaced from the proton, but encompasses it. The magnetic dipole moments are therefore best thought of as tiny current loops. As parallel currents attract, the parallel magnetic dipole moments (i.e., antiparallel spins) have lower energy. In the ground state, the spin-flip transition between these aligned states has an energy difference of . When applied to the
Planck relation The Planck relationFrench & Taylor (1978), pp. 24, 55.Cohen-Tannoudji, Diu & Laloë (1973/1977), pp. 10–11. (referred to as Planck's energy–frequency relation,Schwinger (2001), p. 203. the Planck–Einstein relation, Planck equation, and Plan ...
, this gives: :\lambda = \frac \cdot c = \frac \cdot c \approx \frac\, \cdot\, 2.997\,92 \cdot 10^8 \ \mathrm \cdot \mathrm^ \approx 0.211\,06\ \mathrm = 21.106\ \mathrm\; where is the
wavelength In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
of an emitted photon, is its
frequency Frequency is the number of occurrences of a repeating event per unit of time. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio ...
, is the photon energy, is the
Planck constant The Planck constant, or Planck's constant, denoted by h, is a fundamental physical constant of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a ...
, and is the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant exactly equal to ). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time i ...
in a vacuum. In a laboratory setting, the hydrogen line parameters have been more precisely measured as: : ''λ'' = : ''ν'' = in a vacuum. This transition is highly forbidden with an extremely small transition rate of , and a mean lifetime of the excited state of around 11 million years. Collisions of neutral hydrogen atoms with electrons or other atoms can help promote the emission of 21 cm photons. A spontaneous occurrence of the transition is unlikely to be seen in a laboratory on Earth, but it can be artificially induced through
stimulated emission Stimulated emission is the process by which an incoming photon of a specific frequency can interact with an excited atomic electron (or other excited molecular state), causing it to drop to a lower energy level. The liberated energy transfers to ...
using a
hydrogen maser A hydrogen maser, also known as hydrogen frequency standard, is a specific type of maser that uses the intrinsic properties of the hydrogen atom to serve as a precision frequency reference. Overview Both the proton and electron of a hydrogen ato ...
. It is commonly observed in astronomical settings such as hydrogen clouds in our galaxy and others. Because of the
uncertainty principle The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position a ...
, its long lifetime gives the
spectral line A spectral line is a weaker or stronger region in an otherwise uniform and continuous spectrum. It may result from emission (electromagnetic radiation), emission or absorption (electromagnetic radiation), absorption of light in a narrow frequency ...
an extremely small natural width, so most broadening is due to
Doppler shift The Doppler effect (also Doppler shift) is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. The ''Doppler effect'' is named after the physicist Christian Doppler, who described t ...
s caused by bulk motion or nonzero temperature of the emitting regions.


Discovery

During the 1930s, it was noticed that there was a radio "hiss" that varied on a daily cycle and appeared to be extraterrestrial in origin. After initial suggestions that this was due to the Sun, it was observed that the radio waves seemed to propagate from the centre of the Galaxy. These discoveries were published in 1940 and were noted by
Jan Oort Jan Hendrik Oort ( or ; 28 April 1900 – 5 November 1992) was a Dutch astronomer who made significant contributions to the understanding of the Milky Way and who was a pioneer in the field of radio astronomy. ''The New York Times'' called him ...
who knew that significant advances could be made in astronomy if there were
emission line A spectral line is a weaker or stronger region in an otherwise uniform and continuous spectrum. It may result from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used ...
s in the radio part of the spectrum. He referred this to Hendrik van de Hulst who, in 1944, predicted that
neutral Neutral or neutrality may refer to: Mathematics and natural science Biology * Neutral organisms, in ecology, those that obey the unified neutral theory of biodiversity Chemistry and physics * Neutralization (chemistry), a chemical reaction in ...
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
could produce radiation at a
frequency Frequency is the number of occurrences of a repeating event per unit of time. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio ...
of due to two closely spaced energy levels in the
ground state The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state ...
of the
hydrogen atom A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral hydrogen atom contains a single positively charged proton in the nucleus, and a single negatively charged electron bound to the nucleus by the Coulomb for ...
. The 21 cm line (1420.4 MHz) was first detected in 1951 by
Ewen Ewen is a male given name, most common throughout Scotland as well as Canada, due to the immigration of Scottish people. It is an anglicisation of the Scottish Gaelic name, Eòghann. It is possibly a derivative of the Pictish name, ''Uuen'' (or 'W ...
and
Purcell Henry Purcell (, rare: ; September 1659 – 21 November 1695) was an English composer of Baroque music, most remembered for his more than 100 songs; a tragic opera, ''Dido and Aeneas''; and his incidental music to a version of Shakespeare's ...
at
Harvard University Harvard University is a Private university, private Ivy League research university in Cambridge, Massachusetts, United States. Founded in 1636 and named for its first benefactor, the History of the Puritans in North America, Puritan clergyma ...
, and published after their data was corroborated by Dutch astronomers Muller and Oort, and by
Christiansen Christiansen () is a Denmark, Danish and Norway, Norwegian patronymic surname, literally meaning ''son of Christian''. The spelling variant Kristiansen has identical pronunciation. Christiansen is the sixteenth most common name in Denmark, but is s ...
and Hindman in Australia. After 1952 the first maps of the neutral hydrogen in the Galaxy were made, and revealed for the first time the spiral structure of the
Milky Way The Milky Way or Milky Way Galaxy is the galaxy that includes the Solar System, with the name describing the #Appearance, galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars in other arms of the galax ...
.


Uses


In radio astronomy

The 21 cm spectral line appears within the
radio spectrum The radio spectrum is the part of the electromagnetic spectrum with frequencies from 3  Hz to 3,000 GHz (3  THz). Electromagnetic waves in this frequency range, called radio waves, are widely used in modern technology, particula ...
(in the L band of the UHF band of the microwave window). Electromagnetic energy in this range can easily pass through the Earth's atmosphere and be observed from the Earth with little interference. The hydrogen line can readily penetrate clouds of interstellar
cosmic dust Cosmic dustalso called extraterrestrial dust, space dust, or star dustis dust that occurs in outer space or has fallen onto Earth. Most cosmic dust particles measure between a few molecules and , such as micrometeoroids (30 μm). Cosmic dust can ...
that are
opaque Opacity is the measure of impenetrability to electromagnetic or other kinds of radiation, especially visible light. In radiative transfer, it describes the absorption and scattering of radiation in a medium, such as a plasma, dielectric, shie ...
to
visible light Light, visible light, or visible radiation is electromagnetic radiation that can be perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400–700 nanometres (nm ...
. Assuming that the hydrogen atoms are uniformly distributed throughout the galaxy, each line of sight through the galaxy will reveal a hydrogen line. The only difference between each of these lines is the Doppler shift that each of these lines has. Hence, by assuming
circular motion In physics, circular motion is movement of an object along the circumference of a circle or rotation along a circular arc. It can be uniform, with a constant rate of rotation and constant tangential speed, or non-uniform with a changing rate ...
, one can calculate the relative speed of each arm of our galaxy. The rotation curve of our galaxy has been calculated using the hydrogen line. It is then possible to use the plot of the rotation curve and the velocity to determine the distance to a certain point within the galaxy. However, a limitation of this method is that departures from circular motion are observed at various scales. Hydrogen line observations have been used indirectly to calculate the mass of galaxies, to put limits on any changes over time of the
fine-structure constant In physics, the fine-structure constant, also known as the Sommerfeld constant, commonly denoted by (the Alpha, Greek letter ''alpha''), is a Dimensionless physical constant, fundamental physical constant that quantifies the strength of the el ...
, and to study the dynamics of individual galaxies. The
magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
strength of interstellar space can be measured by observing the
Zeeman effect The Zeeman effect () is the splitting of a spectral line into several components in the presence of a static magnetic field. It is caused by the interaction of the magnetic field with the magnetic moment of the atomic electron associated with ...
on the 21-cm line; a task that was first accomplished by G. L. Verschuur in 1968. In theory, it may be possible to search for
antihydrogen Antihydrogen () is the antimatter counterpart of hydrogen. Whereas the common hydrogen atom is composed of an electron and proton, the antihydrogen atom is made up of a positron and antiproton. Scientists hope that studying antihydrogen may sh ...
atoms by measuring the
polarization Polarization or polarisation may refer to: Mathematics *Polarization of an Abelian variety, in the mathematics of complex manifolds *Polarization of an algebraic form, a technique for expressing a homogeneous polynomial in a simpler fashion by ...
of the 21-cm line in an external magnetic field. Deuterium has a similar hyperfine spectral line at 91.6 cm (327 MHz), and the relative strength of the 21 cm line to the 91.6 cm line can be used to measure the deuterium-to-hydrogen (D/H) ratio. One group in 2007 reported D/H ratio in the galactic anticenter to be 21 ± 7 parts per million.


In cosmology

The line is of great interest in
Big Bang The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models based on the Big Bang concept explain a broad range of phenomena, including th ...
cosmology because it is the only known way to probe the cosmological " dark ages" from recombination (when stable hydrogen atoms first formed) to the
reionization In the fields of Big Bang theory and physical cosmology, cosmology, reionization is the process that caused electrically neutral atoms in the primordial universe to reionize after the lapse of the "Timeline of the Big Bang#Dark Ages, dark ages". ...
epoch. After including the
redshift In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and increase in frequency and e ...
range for this period, this line will be observed at frequencies from 200 MHz to about 15 MHz on Earth. It potentially has two applications. First, by mapping the intensity of redshifted 21 centimeter radiation it can, in principle, provide a very precise picture of the
matter power spectrum The matter power spectrum describes the density contrast of the universe (the difference between the local density and the mean density) as a function of scale. It is the Fourier transform of the matter correlation function. On large scales, ...
in the period after recombination. Second, it can provide a picture of how the universe was re‑ionized, as neutral hydrogen which has been ionized by radiation from stars or quasars will appear as holes in the 21 cm background. However, 21 cm observations are very difficult to make. Ground-based experiments to observe the faint signal are plagued by interference from television transmitters and the
ionosphere The ionosphere () is the ionized part of the upper atmosphere of Earth, from about to above sea level, a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation. It plays ...
, so they must be made from very secluded sites with care taken to eliminate interference. Space based experiments, including on the far side of the Moon (where they would be sheltered from interference from terrestrial radio signals), have been proposed to compensate for this. Little is known about other foreground effects, such as
synchrotron emission Synchrotron radiation (also known as magnetobremsstrahlung) is the electromagnetic radiation emitted when relativistic charged particles are subject to an acceleration perpendicular to their velocity (). It is produced artificially in some types ...
and free–free emission on the galaxy. Despite these problems, 21 cm observations, along with space-based gravitational wave observations, are generally viewed as the next great frontier in observational cosmology, after the cosmic microwave background polarization.


Relevance to the search for non-human intelligent life

The Pioneer plaque, attached to the
Pioneer 10 ''Pioneer 10'' (originally designated Pioneer F) is a NASA space probe launched in 1972 that completed the first mission to the planet Jupiter. ''Pioneer 10'' became the first of five artificial objects to achieve the escape velocity needed ...
and
Pioneer 11 ''Pioneer 11'' (also known as ''Pioneer G'') is a NASA robotic space probe launched on April 5, 1973, to study the asteroid belt, the environment around Jupiter and Saturn, the solar wind, and cosmic rays. It was the first probe to Exploration ...
spacecraft, portrays the hyperfine transition of neutral hydrogen and used the wavelength as a standard scale of measurement. For example, the height of the woman in the image is displayed as eight times 21 cm, or 168 cm. Similarly the frequency of the hydrogen spin-flip transition was used for a unit of time in a map to Earth included on the Pioneer plaques and also the
Voyager 1 ''Voyager 1'' is a space probe launched by NASA on September 5, 1977, as part of the Voyager program to study the outer Solar System and the interstellar medium, interstellar space beyond the Sun's heliosphere. It was launched 16 days afte ...
and
Voyager 2 ''Voyager 2'' is a space probe launched by NASA on August 20, 1977, as a part of the Voyager program. It was launched on a trajectory towards the gas giants (Jupiter and Saturn) and enabled further encounters with the ice giants (Uranus and ...
probes. On this map, the position of the Sun is portrayed relative to 14 
pulsar A pulsar (''pulsating star, on the model of quasar'') is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its Poles of astronomical bodies#Magnetic poles, magnetic poles. This radiation can be obse ...
s whose rotation period circa 1977 is given as a multiple of the frequency of the hydrogen spin-flip transition. It is theorized by the plaque's creators that an advanced civilization would then be able to use the locations of these pulsars to locate the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
at the time the spacecraft were launched. The 21 cm hydrogen line is considered a favorable frequency by the
SETI Seti or SETI may refer to: Astrobiology * SETI, the search for extraterrestrial intelligence. ** SETI Institute, an astronomical research organization *** SETIcon, a former convention organized by the SETI Institute ** Berkeley SETI Research Cent ...
program in their search for signals from potential extraterrestrial civilizations. In 1959, Italian physicist Giuseppe Cocconi and American physicist
Philip Morrison Philip Morrison (November 7, 1915 – April 22, 2005) was a professor of physics at the Massachusetts Institute of Technology (MIT). He is known for his work on the Manhattan Project during World War II, and for his later work in quantum physic ...
published "Searching for interstellar communications", a paper proposing the 21 cm hydrogen line and the potential of microwaves in the search for interstellar communications. According to George Basalla, the paper by Cocconi and Morrison "provided a reasonable theoretical basis" for the then-nascent SETI program. Similarly, Pyotr Makovetsky proposed SETI use a frequency which is equal to either : × ≈ or : 2 × ≈ Since is an
irrational number In mathematics, the irrational numbers are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integers. When the ratio of lengths of two line segments is an irrational number, ...
, such a frequency could not possibly be produced in a natural way as a
harmonic In physics, acoustics, and telecommunications, a harmonic is a sinusoidal wave with a frequency that is a positive integer multiple of the ''fundamental frequency'' of a periodic signal. The fundamental frequency is also called the ''1st har ...
, and would clearly signify its artificial origin. Such a signal would not be overwhelmed by the H I line itself, or by any of its harmonics.


See also

*
Balmer series The Balmer series, or Balmer lines in atomic physics, is one of a set of hydrogen spectral series, six named series describing the spectral line emissions of the hydrogen atom. The Balmer series is calculated using the Balmer formula, an empiri ...
* Chronology of the universe * Dark Ages Radio Explorer *
Hydrogen spectral series The emission spectrum of atomic hydrogen has been divided into a number of ''spectral series'', with wavelengths given by the Rydberg formula. These observed spectral lines are due to the electron making transitions between two energy levels i ...
*
H-alpha Hydrogen-alpha, typically shortened to H-alpha or Hα, is a deep-red visible spectral line of the hydrogen atom with a wavelength of 656.28  nm in air and 656.46 nm in vacuum. It is the first spectral line in the Balmer series and is em ...
, the visible red spectral line with wavelength of 656.28 
nanometer 330px, Different lengths as in respect to the Molecule">molecular scale. The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm), or nanometer (American spelling Despite the va ...
s *
Rydberg formula In atomic physics, the Rydberg formula calculates the wavelengths of a spectral line in many chemical elements. The formula was primarily presented as a generalization of the Balmer series for all atomic electron transitions of hydrogen. It was ...
* Timeline of the Big Bang


Footnotes


References


Further reading


Cosmology

* * * * * * * *


External links

* * — PAST experiment description * * * {{Portal bar, Physics, Chemistry, Astronomy, Stars, Outer space Hydrogen physics Emission spectroscopy Radio astronomy Physical cosmology Astrochemistry Hydrogen