13C NMR Acetonide Analysis
   HOME

TheInfoList



OR:

Carbon-13 (13C) is a natural,
stable isotope Stable nuclides are Isotope, isotopes of a chemical element whose Nucleon, nucleons are in a configuration that does not permit them the surplus energy required to produce a radioactive emission. The Atomic nucleus, nuclei of such isotopes are no ...
of
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
with a
nucleus Nucleus (: nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucleu ...
containing six
protons A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' ( elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an electron (the pro ...
and seven
neutrons The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The neutron was discovered by James Chadwick in 1932, leading to the discovery of nuclear fission in 1938, the f ...
. As one of the
environmental isotopes The environmental isotopes are a subset of isotopes, both Stable isotope ratio, stable and Radioactive isotopes, radioactive, which are the object of isotope geochemistry. They are primarily used as tracers to see how things move around within the o ...
, it makes up about 1.1% of all natural carbon on Earth.


Detection by mass spectrometry

A
mass spectrum A mass spectrum is a histogram plot of intensity vs. ''mass-to-charge ratio'' (''m/z'') in a chemical sample, usually acquired using an instrument called a ''mass spectrometer''. Not all mass spectra of a given substance are the same; for example ...
of an organic compound will usually contain a small peak of one mass unit greater than the apparent molecular ion peak (M) of the whole molecule. This is known as the M+1 peak and comes from the few molecules that contain a 13C atom in place of a 12C. A molecule containing one carbon atom will be expected to have an M+1 peak of approximately 1.1% of the size of the M peak, as 1.1% of the molecules will have a 13C rather than a 12C. Similarly, a molecule containing two carbon atoms will be expected to have an M+1 peak of approximately 2.2% of the size of the M peak, as there is double the previous likelihood that any molecule will contain a 13C atom. In the above, the mathematics and chemistry have been simplified, however it can be used effectively to give the number of carbon atoms for small- to medium-sized organic molecules. In the following formula the result should be rounded to the nearest
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
: :C = \frac where ''C'' = number of C atoms, ''X'' =
amplitude The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of am ...
of the M ion peak, and ''Y'' = amplitude of the M +1 ion peak. 13C-enriched compounds are used in the research of metabolic processes by means of mass spectrometry. Such compounds are safe because they are non-radioactive. In addition, 13C is used to quantify proteins (quantitative
proteomics Proteomics is the large-scale study of proteins. Proteins are vital macromolecules of all living organisms, with many functions such as the formation of structural fibers of muscle tissue, enzymatic digestion of food, or synthesis and replicatio ...
). One important application is in
stable isotope labeling by amino acids in cell culture Stable isotope labeling by/with amino acids in cell culture (SILAC) is a technique based on mass spectrometry that detects differences in protein abundance among samples using non-radioactive isotopic labeling. It is a popular method for quantitat ...
(SILAC). 13C-enriched compounds are used in medical diagnostic tests such as the
urea breath test The urea breath test is a rapid diagnostic procedure used to identify infections by ''Helicobacter pylori'', a spiral bacterium implicated in gastritis, gastric ulcer, and peptic ulcer disease. It is based upon the ability of ''H. pylori'' to ...
. Analysis in these tests is usually of the ratio of 13C to 12C by
isotope ratio mass spectrometry Isotope-ratio mass spectrometry (IRMS) is a specialization of mass spectrometry, in which mass spectrometric methods are used to measure the relative abundance of isotopes in a given sample. This technique has two different applications in the e ...
. The ratio of 13C to 12C is slightly higher in plants employing
C4 carbon fixation carbon fixation or the Hatch–Slack pathway is one of three known photosynthetic processes of carbon fixation in plants. It owes the names to the 1960s discovery by Marshall Davidson Hatch and Charles Roger Slack. fixation is an addition ...
than in plants employing
C3 carbon fixation carbon fixation is the most common of three metabolic pathways for carbon fixation in photosynthesis, the other two being and CAM. This process converts carbon dioxide and ribulose bisphosphate (RuBP, a 5-carbon sugar) into two molecules of ...
. Because the different isotope ratios for the two kinds of plants propagate through the food chain, it is possible to determine if the principal diet of a human or other animal consists primarily of C3 plants or C4 plants by measuring the
isotopic signature An isotopic signature (also isotopic fingerprint) is a ratio of non-radiogenic ' stable isotopes', stable radiogenic isotopes, or unstable radioactive isotopes of particular elements in an investigated material. The ratios of isotopes in a sample ...
of their collagen and other tissues.


Uses in science

Due to differential uptake in plants as well as marine carbonates of 13C, it is possible to use these isotopic signatures in earth science. Biological processes preferentially take up the lower mass isotope through
kinetic fractionation Kinetic fractionation is an isotopic fractionation process that separates stable isotopes from each other by their mass during unidirectional processes. Biological processes are generally unidirectional and are very good examples of "kinetic" isot ...
. In aqueous geochemistry, by analyzing the δ13C value of carbonaceous material found in surface and ground waters, the source of the water can be identified. This is because atmospheric, carbonate, and plant derived δ13C values all differ. In biology, the ratio of carbon-13 and carbon-12 isotopes in plant tissues is different depending on the type of plant photosynthesis and this can be used, for example, to determine which types of plants were consumed by animals. Greater carbon-13 concentrations indicate stomatal limitations, which can provide information on plant behaviour during drought. Tree ring analysis of carbon isotopes can be used to retrospectively understand forest photosynthesis and how it is impacted by drought. In geology, the 13C/12C ratio is used to identify the layer in sedimentary rock created at the time of the
Permian extinction The Permian ( ) is a geologic period and stratigraphic system which spans 47 million years, from the end of the Carboniferous Period million years ago (Mya), to the beginning of the Triassic Period 251.902 Mya. It is the sixth and last period o ...
252 Mya when the ratio changed abruptly by 1%. More information about usage of 13C/12C ratio in science can be found in the article about isotopic signatures. Carbon-13 has a non-zero spin quantum number of , and hence allows the structure of carbon-containing substances to be investigated using
carbon-13 nuclear magnetic resonance Carbon-13 (C13) nuclear magnetic resonance (most commonly known as carbon-13 NMR spectroscopy or 13C NMR spectroscopy or sometimes simply referred to as carbon NMR) is the application of nuclear magnetic resonance (NMR) spectroscopy to carbon. It ...
. The carbon-13 urea breath test is a safe and highly accurate diagnostic tool to detect the presence of ''
Helicobacter pylori ''Helicobacter pylori'', previously known as ''Campylobacter pylori'', is a gram-negative, Flagellum#bacterial, flagellated, Bacterial cellular morphologies#Helical, helical bacterium. Mutants can have a rod or curved rod shape that exhibits l ...
'' infection in the stomach. The urea breath test utilizing carbon-13 is preferred to
carbon-14 Carbon-14, C-14, C or radiocarbon, is a radioactive isotope of carbon with an atomic nucleus containing 6 protons and 8 neutrons. Its presence in organic matter is the basis of the radiocarbon dating method pioneered by Willard Libby and coll ...
for certain vulnerable populations due to its non-radioactive nature.


Production

Bulk carbon-13 for commercial use, e.g. in chemical synthesis, is enriched from its natural 1% abundance. Although carbon-13 can be separated from the major carbon-12 isotope via techniques such as thermal diffusion, chemical exchange, gas diffusion, and laser and cryogenic distillation, currently only cryogenic distillation of
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The abundance of methane on Earth makes ...
(boiling point −161.5°C) or
carbon monoxide Carbon monoxide (chemical formula CO) is a poisonous, flammable gas that is colorless, odorless, tasteless, and slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the si ...
(b.p. −191.5°C) is an economically feasible industrial production technique. Industrial carbon-13 production plants represent a substantial investment, greater than 100 meter tall cryogenic distillation columns are needed to separate the carbon-12 or carbon-13 containing compounds. The largest reported commercial carbon-13 production plant in the world as of 2014 has a production capability of ~400 kg of carbon-13 annually. In contrast, a 1969 carbon monoxide cryogenic distillation pilot plant at Los Alamos Scientific Laboratories could produce 4 kg of carbon-13 annually.


See also

*
Isotopes of carbon Carbon (6C) has 14 known isotopes, from to as well as , of which only and are stable. The longest-lived radioisotope is , with a half-life of years. This is also the only carbon radioisotope found in nature, as trace quantities are formed ...
*
Isotope fractionation Isotope fractionation describes fractionation processes that affect the relative abundance of isotopes, a phenomena that occurs (and so advantage is taken of it) in the study geochemistry, biochemistry, food science, and other fields. Normally, ...


Notes

{{Isotope sequence , element=carbon , lighter=
carbon-12 Carbon-12 (12C) is the most abundant of the two stable isotopes of carbon ( carbon-13 being the other), amounting to 98.93% of element carbon on Earth; its abundance is due to the triple-alpha process by which it is created in stars. Carbon-1 ...
, heavier=
carbon-14 Carbon-14, C-14, C or radiocarbon, is a radioactive isotope of carbon with an atomic nucleus containing 6 protons and 8 neutrons. Its presence in organic matter is the basis of the radiocarbon dating method pioneered by Willard Libby and coll ...
, before= boron-13,
nitrogen-13 Nitrogen-13 (13N) is a radioisotope of nitrogen used in positron emission tomography (PET). It has a half-life of a little under ten minutes, so it must be made at the PET site. A cyclotron may be used for this purpose. Nitrogen-13 is used to tag ...
, after=stable Isotopes of carbon Medical isotopes Environmental isotopes