HOME





Weak Bruhat Order
In mathematics, the Bruhat order (also called the strong order, strong Bruhat order, Chevalley order, Bruhat–Chevalley order, or Chevalley–Bruhat order) is a partial order on the elements of a Coxeter group, that corresponds to the inclusion order on Schubert varieties. History The Bruhat order on the Schubert variety, Schubert varieties of a flag manifold or a Grassmannian was first studied by , and the analogue for more general semisimple algebraic groups was studied by Claude Chevalley in an unpublished manuscript from 1958, not published until 1994. started the combinatorial study of the Bruhat order on the Weyl group, and introduced the name "Bruhat order" because of the relation to the Bruhat decomposition introduced by François Bruhat. The left and right weak Bruhat orderings were studied by . Definition If is a Coxeter system with generators , then the Bruhat order is a partial order on the group . The definition of Bruhat order relies on several other definitions ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partial Order
In mathematics, especially order theory, a partial order on a set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements needs to be comparable; that is, there may be pairs for which neither element precedes the other. Partial orders thus generalize total orders, in which every pair is comparable. Formally, a partial order is a homogeneous binary relation that is reflexive, antisymmetric, and transitive. A partially ordered set (poset for short) is an ordered pair P=(X,\leq) consisting of a set X (called the ''ground set'' of P) and a partial order \leq on X. When the meaning is clear from context and there is no ambiguity about the partial order, the set X itself is sometimes called a poset. Partial order relations The term ''partial order'' usually refers to the reflexive partial order relations, referred to in this article as ''non-strict'' partial orders. However som ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reduced Word
In group theory, a word is any written product of group elements and their inverses. For example, if ''x'', ''y'' and ''z'' are elements of a group ''G'', then ''xy'', ''z''−1''xzz'' and ''y''−1''zxx''−1''yz''−1 are words in the set . Two different words may evaluate to the same value in ''G'', or even in every group. Words play an important role in the theory of free groups and presentations, and are central objects of study in combinatorial group theory. Definitions Let ''G'' be a group, and let ''S'' be a subset of ''G''. A word in ''S'' is any expression of the form :s_1^ s_2^ \cdots s_n^ where ''s''1,...,''sn'' are elements of ''S'', called generators, and each ''εi'' is ±1. The number ''n'' is known as the length of the word. Each word in ''S'' represents an element of ''G'', namely the product of the expression. By convention, the unique Uniqueness of identity element and inverses identity element can be represented by the empty word, which is the unique wo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coxeter Groups
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; for example, the symmetry group of each regular polyhedron is a finite Coxeter group. However, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced in 1934 as abstractions of reflection groups, and finite Coxeter groups were classified in 1935. Coxeter groups find applications in many areas of mathematics. Examples of finite Coxeter groups include the symmetry groups of regular polytopes, and the Weyl groups of simple Lie algebras. Examples of infinite Coxeter groups include the triangle groups corresponding to regular tessellations of the Euclidean plane and the hyperbolic plane, and the Weyl groups of infinite-dimensional Kac–M ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bulletin Of The American Mathematical Society
The ''Bulletin of the American Mathematical Society'' is a quarterly mathematical journal published by the American Mathematical Society. Scope It publishes surveys on contemporary research topics, written at a level accessible to non-experts. It also publishes, by invitation only, book reviews and short ''Mathematical Perspectives'' articles. History It began as the ''Bulletin of the New York Mathematical Society'' and underwent a name change when the society became national. The Bulletin's function has changed over the years; its original function was to serve as a research journal for its members. Indexing The Bulletin is indexed in Mathematical Reviews, Science Citation Index, ISI Alerting Services, CompuMath Citation Index, and Current Contents/Physical, Chemical & Earth Sciences. See also *'' Journal of the American Mathematical Society'' *'' Memoirs of the American Mathematical Society'' *'' Notices of the American Mathematical Society'' *'' Proceedings of the Ame ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Annals Of Mathematics
The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as the founding editor-in-chief. It was "intended to afford a medium for the presentation and analysis of any and all questions of interest or importance in pure and applied Mathematics, embracing especially all new and interesting discoveries in theoretical and practical astronomy, mechanical philosophy, and engineering". It was published in Des Moines, Iowa, and was the earliest American mathematics journal to be published continuously for more than a year or two. This incarnation of the journal ceased publication after its tenth year, in 1883, giving as an explanation Hendricks' declining health, but Hendricks made arrangements to have it taken over by new management, and it was continued from March 1884 as the ''Annals of Mathematics''. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second-largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe became the first president while Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance over concerns about competing with the '' American Journal of Mathematics''. The result was the ''Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influentia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kazhdan–Lusztig Polynomial
In the mathematical field of representation theory, a Kazhdan–Lusztig polynomial P_(q) is a member of a family of integral polynomials introduced by . They are indexed by pairs of elements ''y'', ''w'' of a Coxeter group ''W'', which can in particular be the Weyl group of a Lie group. Motivation and history In the spring of 1978 Kazhdan and Lusztig were studying Springer correspondence, Springer representations of the Weyl group of an algebraic group on Étale cohomology#ℓ-adic cohomology groups, \ell-adic cohomology groups related to conjugacy classes which are unipotent. They found a new construction of these representations over the complex numbers . The representation had two natural bases, and the transition matrix between these two bases is essentially given by the Kazhdan–Lusztig polynomials. The actual Kazhdan–Lusztig construction of their polynomials is more elementary. Kazhdan and Lusztig used this to construct a canonical basis in the Hecke algebra of a Coxeter g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eulerian Poset
In combinatorial mathematics, an Eulerian poset is a graded poset in which every nontrivial interval has the same number of elements of even rank as of odd rank. An Eulerian poset which is a lattice is an Eulerian lattice. These objects are named after Leonhard Euler. Eulerian lattices generalize face lattices of convex polytopes and much recent research has been devoted to extending known results from polyhedral combinatorics, such as various restrictions on ''f''-vectors of convex simplicial polytopes, to this more general setting. Examples * The face lattice of a convex polytope, consisting of its faces, together with the smallest element, the empty face, and the largest element, the polytope itself, is an Eulerian lattice. The odd–even condition follows from Euler's formula. * Any simplicial generalized homology sphere is an Eulerian lattice. * Let ''L'' be a regular cell complex such that , ''L'', is a manifold with the same Euler characteristic as the sphere of the same ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Möbius Function Of A Poset
In order theory, a field of mathematics, an incidence algebra is an associative algebra, defined for every locally finite partially ordered set and commutative ring with unity. Subalgebras called reduced incidence algebras give a natural construction of various types of generating functions used in combinatorics and number theory. Definition A locally finite poset is one in which every closed interval : 'a, b''= is finite. The members of the incidence algebra are the functions ''f'' assigning to each nonempty interval 'a, b''a scalar ''f''(''a'', ''b''), which is taken from the ''ring of scalars'', a commutative ring with unity. On this underlying set one defines addition and scalar multiplication pointwise, and "multiplication" in the incidence algebra is a convolution defined by :(f*g)(a, b)=\sum_f(a, x)g(x, b). An incidence algebra is finite-dimensional if and only if the underlying poset is finite. Related concepts An incidence algebra is analogous to a group algebra; ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Weak Order Of Permutations
In computer science and discrete mathematics, an inversion in a sequence is a pair of elements that are out of their natural order. Definitions Inversion Let \pi be a permutation. There is an inversion of \pi between i and j if i \pi(j). The inversion is indicated by an ordered pair containing either the places (i, j) or the elements \bigl(\pi(i), \pi(j)\bigr). The inversion set is the set of all inversions. A permutation's inversion set using place-based notation is the same as the inverse permutation's inversion set using element-based notation with the two components of each ordered pair exchanged. Likewise, a permutation's inversion set using element-based notation is the same as the inverse permutation's inversion set using place-based notation with the two components of each ordered pair exchanged. Inversions are usually defined for permutations, but may also be defined for sequences:Let S be a sequence (or multiset permutation). If i S(j), either the pair of p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coxeter System
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; for example, the symmetry group of each regular polyhedron is a finite Coxeter group. However, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced in 1934 as abstractions of reflection groups, and finite Coxeter groups were classified in 1935. Coxeter groups find applications in many areas of mathematics. Examples of finite Coxeter groups include the symmetry groups of regular polytopes, and the Weyl groups of simple Lie algebras. Examples of infinite Coxeter groups include the triangle groups corresponding to regular tessellations of the Euclidean plane and the hyperbolic plane, and the Weyl groups of infinite-dimensional Kac–Moo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]