Walk-regular Graph
In discrete mathematics, a walk-regular graph is a simple graph where the number of closed walks of any length from a vertex to itself does not depend on the choice of vertex. Equivalent definitions Suppose that G is a simple graph. Let A denote the adjacency matrix of G, V(G) denote the set of vertices of G, and \Phi_(x) denote the characteristic polynomial of the vertex-deleted subgraph G - v for all v \in V(G).Then the following are equivalent: * G is walk-regular. * A^k is a constant-diagonal matrix for all k \geq 0. * \Phi_(x) = \Phi_(x) for all u, v \in V(G). Examples * The vertex-transitive graphs are walk-regular. * The semi-symmetric graphs are walk-regular. * The distance-regular graphs are walk-regular. More generally, any simple graph in a homogeneous coherent algebra is walk-regular. * A connected regular graph is walk-regular if: ** It has at most four distinct eigenvalues. ** It is triangle-free and has at most five distinct eigenvalues. ** It is bipartite a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Simple Graph
In discrete mathematics, and more specifically in graph theory, a graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called '' vertices'' (also called ''nodes'' or ''points'') and each of the related pairs of vertices is called an ''edge'' (also called ''link'' or ''line''). Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges. Graphs are one of the objects of study in discrete mathematics. The edges may be directed or undirected. For example, if the vertices represent people at a party, and there is an edge between two people if they shake hands, then this graph is undirected because any person ''A'' can shake hands with a person ''B'' only if ''B'' also shakes hands with ''A''. In contrast, if an edge from a person ''A'' to a person ''B'' means that ''A'' owes money to ''B'', th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Strong Product Of Graphs
In graph theory, the strong product is a way of combining two graphs to make a larger graph. Two vertices are adjacent in the strong product when they come from pairs of vertices in the factor graphs that are either adjacent or identical. The strong product is one of several different graph product operations that have been studied in graph theory. The strong product of any two graphs can be constructed as the union of two other products of the same two graphs, the Cartesian product of graphs and the tensor product of graphs. An example of a strong product is the king's graph, the graph of moves of a chess king on a chessboard, which can be constructed as a strong product of path graphs. Decompositions of planar graphs and related graph classes into strong products have been used as a central tool to prove many other results about these graphs. Care should be exercised when encountering the term ''strong product'' in the literature, since it has also been used to denote the te ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Graph Theory
Algebraic graph theory is a branch of mathematics in which algebraic methods are applied to problems about graphs. This is in contrast to geometric, combinatoric, or algorithmic approaches. There are three main branches of algebraic graph theory, involving the use of linear algebra, the use of group theory, and the study of graph invariants. Branches of algebraic graph theory Using linear algebra The first branch of algebraic graph theory involves the study of graphs in connection with linear algebra. Especially, it studies the spectrum of the adjacency matrix, or the Laplacian matrix of a graph (this part of algebraic graph theory is also called spectral graph theory). For the Petersen graph, for example, the spectrum of the adjacency matrix is (−2, −2, −2, −2, 1, 1, 1, 1, 1, 3). Several theorems relate properties of the spectrum to other graph properties. As a simple example, a connected graph with diameter ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Brendan McKay (mathematician)
Brendan Damien McKay (born 26 October 1951 in Melbourne, Australia) is an Emeritus Professor in the Research School of Computer Science at the Australian National University (ANU). He has published extensively in combinatorics. McKay received a Ph.D. in mathematics from the University of Melbourne in 1980, and was appointed Assistant Professor of Computer Science at Vanderbilt University, Nashville in the same year (1980–1983). His thesis, ''Topics in Computational Graph Theory'', was written under the direction of Derek Holton. He was awarded the Australian Mathematical Society Medal in 1990. He was elected a Fellow of the Australian Academy of Science in 1997, and appointed Professor of Computer Science at the ANU in 2000. Mathematics McKay is the author of at least 127 refereed articles. One of McKay's main contributions has been a practical algorithm for the graph isomorphism problem and its software implementation NAUTY (No AUTomorphisms, Yes?). Further achievements ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chris Godsil
Christopher David Godsil is a professor and the former Chair at the Department of Combinatorics and Optimization in the faculty of mathematics at the University of Waterloo. He wrote the popular textbook on algebraic graph theory, entitled ''Algebraic Graph Theory'', with Gordon Royle, His earlier textbook on algebraic combinatorics discussed distance-regular graphs and association schemes. Background He started the Journal of Algebraic Combinatorics, and was the Editor-in-Chief of the Electronic Journal of Combinatorics from 2004 to 2008. He is also on the editorial board of the Journal of Combinatorial Theory Series B and Combinatorica. He obtained his Ph.D. in 1979 at the University of Melbourne under the supervision of Derek Alan Holton. He wrote a paper with Paul Erdős, so making his Erdős number The Erdős number () describes the "collaborative distance" between mathematician Paul Erdős and another person, as measured by authorship of ma ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Degree (graph Theory)
In graph theory, the degree (or valency) of a vertex of a graph is the number of edges that are incident to the vertex; in a multigraph, a loop contributes 2 to a vertex's degree, for the two ends of the edge. The degree of a vertex v is denoted \deg(v) or \deg v. The maximum degree of a graph G, denoted by \Delta(G), and the minimum degree of a graph, denoted by \delta(G), are the maximum and minimum of its vertices' degrees. In the multigraph shown on the right, the maximum degree is 5 and the minimum degree is 0. In a regular graph, every vertex has the same degree, and so we can speak of ''the'' degree of the graph. A complete graph (denoted K_n, where n is the number of vertices in the graph) is a special kind of regular graph where all vertices have the maximum possible degree, n-1. In a signed graph, the number of positive edges connected to the vertex v is called positive deg(v) and the number of connected negative edges is entitled negative deg(v). Handshaking le ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Distance-regular Graphs
In the mathematical field of graph theory, a distance-regular graph is a regular graph such that for any two vertices and , the number of vertices at distance from and at distance from depends only upon , , and the distance between and . Every distance-transitive graph is distance-regular. Indeed, distance-regular graphs were introduced as a combinatorial generalization of distance-transitive graphs, having the numerical regularity properties of the latter without necessarily having a large automorphism group. Intersection arrays It turns out that a graph G of diameter d is distance-regular if and only if there is an array of integers \ such that for all 1 \leq j \leq d , b_j gives the number of neighbours of u at distance j+1 from v and c_j gives the number of neighbours of u at distance j - 1 from v for any pair of vertices u and v at distance j on G . The array of integers characterizing a distance-regular graph is known as its intersection array. Cos ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Diameter (graph Theory)
In the mathematical field of graph theory, the distance between two vertices in a graph is the number of edges in a shortest path (also called a graph geodesic) connecting them. This is also known as the geodesic distance or shortest-path distance. Notice that there may be more than one shortest path between two vertices. If there is no Path (graph theory), path connecting the two vertices, i.e., if they belong to different connected component (graph theory), connected components, then conventionally the distance is defined as infinite. In the case of a directed graph the distance between two vertices and is defined as the length of a shortest directed path from to consisting of arcs, provided at least one such path exists. Notice that, in contrast with the case of undirected graphs, does not necessarily coincide with —so it is just a Metric (mathematics)#Quasimetrics, quasi-metric, and it might be the case that one is defined while the other is not. Related concept ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Distance (graph Theory)
In the mathematical field of graph theory, the distance between two vertices in a graph is the number of edges in a shortest path (also called a graph geodesic) connecting them. This is also known as the geodesic distance or shortest-path distance. Notice that there may be more than one shortest path between two vertices. If there is no path connecting the two vertices, i.e., if they belong to different connected components, then conventionally the distance is defined as infinite. In the case of a directed graph the distance between two vertices and is defined as the length of a shortest directed path from to consisting of arcs, provided at least one such path exists. Notice that, in contrast with the case of undirected graphs, does not necessarily coincide with —so it is just a quasi-metric, and it might be the case that one is defined while the other is not. Related concepts A metric space defined over a set of points in terms of distances in a graph defined over t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Line Graph
In the mathematical discipline of graph theory, the line graph of an undirected graph is another graph that represents the adjacencies between edges of . is constructed in the following way: for each edge in , make a vertex in ; for every two edges in that have a vertex in common, make an edge between their corresponding vertices in . The name line graph comes from a paper by although both and used the construction before this. Other terms used for the line graph include the covering graph, the derivative, the edge-to-vertex dual, the conjugate, the representative graph, and the θ-obrazom, as well as the edge graph, the interchange graph, the adjoint graph, and the derived graph., p. 71. proved that with one exceptional case the structure of a connected graph can be recovered completely from its line graph. Many other properties of line graphs follow by translating the properties of the underlying graph from vertices into edges, and by Whitney's theorem the same ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tensor Product Of Graphs
In graph theory, the tensor product of graphs and is a graph such that * the vertex set of is the Cartesian product ; and * vertices and are adjacent in if and only if ** is adjacent to in , and ** is adjacent to in . The tensor product is also called the direct product, Kronecker product, categorical product, cardinal product, relational product, weak direct product, or conjunction. As an operation on binary relations, the tensor product was introduced by Alfred North Whitehead and Bertrand Russell in their Principia Mathematica (1912). It is also equivalent to the Kronecker product of the adjacency matrices of the graphs. The notation is also (and formerly normally was) used to represent another construction known as the Cartesian product of graphs, but nowadays more commonly refers to the tensor product. The cross symbol shows visually the two edges resulting from the tensor product of two edges. This product should not be confused with the strong product of gr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Adjacency Matrix
In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph. In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal. If the graph is undirected (i.e. all of its edges are bidirectional), the adjacency matrix is symmetric. The relationship between a graph and the eigenvalues and eigenvectors of its adjacency matrix is studied in spectral graph theory. The adjacency matrix of a graph should be distinguished from its incidence matrix, a different matrix representation whose elements indicate whether vertex–edge pairs are incident or not, and its degree matrix, which contains information about the degree of each vertex. Definition For a simple graph with vertex set , the adjacency matrix is a square matrix such that its element is one when there is an edge from vertex to vert ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |