Ultrahyperbolic Operator
   HOME





Ultrahyperbolic Operator
In the mathematical field of differential equations, the ultrahyperbolic equation is a partial differential equation (PDE) for an unknown scalar function of variables of the form \frac + \cdots + \frac - \frac - \cdots - \frac = 0. More generally, if is any quadratic form in variables with signature , then any PDE whose principal part is a_u_ is said to be ultrahyperbolic. Any such equation can be put in the form above by means of a change of variables.See Courant and Hilbert. The ultrahyperbolic equation has been studied from a number of viewpoints. On the one hand, it resembles the classical wave equation. This has led to a number of developments concerning its characteristics, one of which is due to Fritz John: the John equation. In 2008, Walter Craig and Steven Weinstein proved that under a nonlocal constraint, the initial value problem is well-posed for initial data given on a codimension-one hypersurface. And later, in 2022, a research team at the University ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


John Equation
John's equation is an ultrahyperbolic partial differential equation satisfied by the X-ray transform of a function. It is named after German-American mathematician Fritz John. Given a function f\colon\mathbb^n \rightarrow \mathbb with compact support the ''X-ray transform'' is the integral over all lines in \R^n. We will parameterise the lines by pairs of points x,y \in \R^n, x \ne y on each line and define u as the ray transform where : u(x,y) = \int\limits_^ f( x + t(y-x) ) dt. Such functions u are characterized by John's equations : \frac - \frac=0 which is proved by Fritz John for dimension three and by Kurusa for higher dimensions. In three-dimensional x-ray computerized tomography John's equation can be solved to fill in missing data, for example where the data is obtained from a point source traversing a curve, typically a helix. More generally an ''ultrahyperbolic'' partial differential equation (a term coined by Richard Courant) is a second order partial differentia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Mean Value Theorem
In mathematics, the mean value theorem (or Lagrange's mean value theorem) states, roughly, that for a given planar arc (geometry), arc between two endpoints, there is at least one point at which the tangent to the arc is parallel to the secant line, secant through its endpoints. It is one of the most important results in real analysis. This theorem is used to prove statements about a function on an interval (mathematics), interval starting from local hypotheses about derivatives at points of the interval. History A special case of this theorem for inverse interpolation of the sine was first described by Parameshvara (1380–1460), from the Kerala School of Astronomy and Mathematics in India, in his commentaries on Govindasvāmi and Bhāskara II. A restricted form of the theorem was proved by Michel Rolle in 1691; the result was what is now known as Rolle's theorem, and was proved only for polynomials, without the techniques of calculus. The mean value theorem in its modern for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Elliptic Differential Operator
In the theory of partial differential equations, elliptic operators are differential operators that generalize the Laplace operator. They are defined by the condition that the coefficients of the highest-order derivatives be positive, which implies the key property that the principal symbol is invertible, or equivalently that there are no real Method of characteristics, characteristic directions. Elliptic operators are typical of potential theory, and they appear frequently in electrostatics and continuum mechanics. Elliptic regularity implies that their solutions tend to be smooth functions (if the coefficients in the operator are smooth). Steady-state solutions to Hyperbolic partial differential equation, hyperbolic and Parabolic partial differential equation, parabolic equations generally solve elliptic equations. Definitions Let L be a Differential operator, linear differential operator of order ''m'' on a domain \Omega in R''n'' given by Lu = \sum_ a_\alpha(x)\partial^ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Symmetric Space
In mathematics, a symmetric space is a Riemannian manifold (or more generally, a pseudo-Riemannian manifold) whose group of isometries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geometry, leading to consequences in the theory of holonomy; or algebraically through Lie theory, which allowed Cartan to give a complete classification. Symmetric spaces commonly occur in differential geometry, representation theory and harmonic analysis. In geometric terms, a complete, simply connected Riemannian manifold is a symmetric space if and only if its curvature tensor is invariant under parallel transport. More generally, a Riemannian manifold (''M'', ''g'') is said to be symmetric if and only if, for each point ''p'' of ''M'', there exists an isometry of ''M'' fixing ''p'' and acting on the tangent space T_pM as minus the identity (every symmetric space is complete, since any geodesic can be extended indefinitely via symmetri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Functional Magnetic Resonance Imaging
Functional magnetic resonance imaging or functional MRI (fMRI) measures brain activity by detecting changes associated with blood flow. This technique relies on the fact that cerebral blood flow and neuronal activation are coupled. When an area of the brain is in use, blood flow to that region also increases. The primary form of fMRI uses the blood-oxygen-level dependent (BOLD) contrast, discovered by Seiji Ogawa in 1990. This is a type of specialized brain and body scan used to map neuron, neural activity in the brain or spinal cord of humans or other animals by imaging the change in blood flow (hemodynamic response) related to energy use by brain cells. Since the early 1990s, fMRI has come to dominate brain mapping research because it does not involve the use of injections, surgery, the ingestion of substances, or exposure to ionizing radiation. This measure is frequently corrupted by noise from various sources; hence, statistical procedures are used to extract the underlying si ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Multiple Time Dimensions
The possibility that there might be more than one dimension of time has occasionally been discussed in physics and philosophy. Similar ideas appear in folklore and fantasy literature. Physics Speculative theories with more than one time dimension have been explored in physics. The additional dimensions may be similar to conventional time, compactified like the additional spatial dimensions in string theory, or components of a complex time (sometimes referred to as kime). Itzhak Bars has proposed models of a two-time physics, noting in 2001 that "The 2T-physics approach in ''d'' + 2 dimensions offers a highly symmetric and unified version of the phenomena described by 1T-physics in ''d'' dimensions." F-theory, a branch of modern string theory, describes a 12-dimensional spacetime having two dimensions of time, giving it the metric signature (10,2). The existence of a well-posed initial value problem for the ultrahyperbolic equation (a wave equation in more than one time di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

University Of Michigan
The University of Michigan (U-M, U of M, or Michigan) is a public university, public research university in Ann Arbor, Michigan, United States. Founded in 1817, it is the oldest institution of higher education in the state. The University of Michigan is one of the earliest American research universities and is a founding member of the Association of American Universities. In the fall of 2023, the university employed 8,189 faculty members and enrolled 52,065 students in its programs. The university is Carnegie Classification of Institutions of Higher Education, classified among "R1: Doctoral Universities – Very high research activity". It consists of nineteen colleges and offers 250 degree programs at the undergraduate and graduate levels. The university is Higher education accreditation in the United States, accredited by the Higher Learning Commission. In 2021, it ranked third among American universities in List of countries by research and development spending, research expe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Hypersurface
In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension , which is embedded in an ambient space of dimension , generally a Euclidean space, an affine space or a projective space. Hypersurfaces share, with surfaces in a three-dimensional space, the property of being defined by a single implicit equation, at least locally (near every point), and sometimes globally. A hypersurface in a (Euclidean, affine, or projective) space of dimension two is a plane curve. In a space of dimension three, it is a surface. For example, the equation :x_1^2+x_2^2+\cdots+x_n^2-1=0 defines an algebraic hypersurface of dimension in the Euclidean space of dimension . This hypersurface is also a smooth manifold, and is called a hypersphere or an -sphere. Smooth hypersurface A hypersurface that is a smooth manifold is called a ''smooth hypersurface''. In , a smooth hypersurface is ori ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Fritz John
Fritz John (14 June 1910 – 10 February 1994) was a German-born mathematician specialising in partial differential equations and ill-posed problems. His early work was on the Radon transform and he is remembered for John's equation. He was a 1984 MacArthur Fellow. Life and career John was born in Berlin, Imperial Germany, the son of Hedwig (née Bürgel) and Hermann Jacobson-John. He studied mathematics from 1929 to 1933 in Göttingen where he was influenced by Richard Courant, among others. Following Hitler's rise to power in 1933 "non-aryans" were being expelled from teaching posts, and John, being half Jewish, emigrated from Germany to England. John published his first paper in 1934 on Morse theory. He was awarded his doctorate in 1934 with a thesis entitled ''Determining a function from its integrals over certain manifolds'' from Göttingen. With Richard Courant's assistance he spent a year at St John's College, Cambridge. During this time he published papers on the Ra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Method Of Characteristics
Method (, methodos, from μετά/meta "in pursuit or quest of" + ὁδός/hodos "a method, system; a way or manner" of doing, saying, etc.), literally means a pursuit of knowledge, investigation, mode of prosecuting such inquiry, or system. In recent centuries it more often means a prescribed process for completing a task. It may refer to: *Scientific method, a series of steps, or collection of methods, taken to acquire knowledge *Method (computer programming), a piece of code associated with a class or object to perform a task * Method (patent), under patent law, a protected series of steps or acts *Methodism, a Christian religious movement *Methodology, comparison or study and critique of individual methods that are used in a given discipline or field of inquiry *''Discourse on the Method'', a philosophical and mathematical treatise by René Descartes * ''Methods'' (journal), a scientific journal covering research on techniques in the experimental biological and medical sciences ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]