HOME





Transfer Matrix
In applied mathematics, the transfer matrix is a formulation in terms of a block-Toeplitz matrix of the two-scale equation, which characterizes refinable functions. Refinable functions play an important role in wavelet theory and finite element theory. For the mask h, which is a vector with component indexes from a to b, the transfer matrix of h, we call it T_h here, is defined as : (T_h)_ = h_. More verbosely : T_h = \begin h_ & & & & & \\ h_ & h_ & h_ & & & \\ h_ & h_ & h_ & h_ & h_ & \\ \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ & h_ & h_ & h_ & h_ & h_ \\ & & & h_ & h_ & h_ \\ & & & & & h_ \end. The effect of T_h can be expressed in terms of the downsampling operator "\downarrow": :T_h\cdot x = (h*x)\downarrow 2. Properties See also * Hurwitz determinant In mathematics, Hurwitz determinants were introduced by , who used them to give a criterion fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Applied Mathematics
Applied mathematics is the application of mathematics, mathematical methods by different fields such as physics, engineering, medicine, biology, finance, business, computer science, and Industrial sector, industry. Thus, applied mathematics is a combination of mathematical science and specialized knowledge. The term "applied mathematics" also describes the profession, professional specialty in which mathematicians work on practical problems by formulating and studying mathematical models. In the past, practical applications have motivated the development of mathematical theories, which then became the subject of study in pure mathematics where abstract concepts are studied for their own sake. The activity of applied mathematics is thus intimately connected with research in pure mathematics. History Historically, applied mathematics consisted principally of Mathematical analysis, applied analysis, most notably differential equations; approximation theory (broadly construed, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Determinant
In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the matrix and the linear map represented, on a given basis (linear algebra), basis, by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible matrix, invertible and the corresponding linear map is an linear isomorphism, isomorphism. However, if the determinant is zero, the matrix is referred to as singular, meaning it does not have an inverse. The determinant is completely determined by the two following properties: the determinant of a product of matrices is the product of their determinants, and the determinant of a triangular matrix is the product of its diagonal entries. The determinant of a matrix is :\begin a & b\\c & d \end=ad-bc, and the determinant of a matrix is : \begin a & b & c \\ d & e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Hurwitz Determinant
In mathematics, Hurwitz determinants were introduced by , who used them to give a criterion for all roots of a polynomial to have negative real part. Definition Consider a characteristic polynomial ''P'' in the variable ''λ'' of the form: : P(\lambda)= a_0 \lambda^n + a_1 \lambda^ + \cdots + a_ \lambda + a_n where a_i, i=0,1,\ldots,n, are real. The square Hurwitz matrix associated to ''P'' is given below: : H= \begin a_1 & a_3 & a_5 & \dots & \dots & \dots & 0 & 0 & 0 \\ a_0 & a_2 & a_4 & & & & \vdots & \vdots & \vdots \\ 0 & a_1 & a_3 & & & & \vdots & \vdots & \vdots \\ \vdots & a_0 & a_2 & \ddots & & & 0 & \vdots & \vdots \\ \vdots & 0 & a_1 & & \ddots & & a_n & \vdots & \vdots \\ \vdots & \vdots & a_0 & & & \ddots & a_ & 0 & \vdots \\ \vdots & \vdots & 0 & & & & a_ & a_n & \vdots \\ \vdots & \vdots & \vdots & & & & a_ & a_ & 0 \\ 0 & 0 & 0 & \dots & \dots & \dots & a_ & a_ & a_n \end. The ''i-''th ''Hurwitz determinant'' is the ''i-''th leading principal minor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Fast Fourier Transform
A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT). A Fourier transform converts a signal from its original domain (often time or space) to a representation in the frequency domain and vice versa. The DFT is obtained by decomposing a sequence of values into components of different frequencies. This operation is useful in many fields, but computing it directly from the definition is often too slow to be practical. An FFT rapidly computes such transformations by Matrix decomposition, factorizing the DFT matrix into a product of Sparse matrix, sparse (mostly zero) factors. As a result, it manages to reduce the Computational complexity theory, complexity of computing the DFT from O(n^2), which arises if one simply applies the definition of DFT, to O(n \log n), where is the data size. The difference in speed can be enormous, especially for long data sets where may be in the thousands or millions. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Upsampling
In digital signal processing, upsampling, expansion, and interpolation are terms associated with the process of sample rate conversion, resampling in a multi-rate digital signal processing system. ''Upsampling'' can be synonymous with ''expansion'', or it can describe an entire process of ''expansion'' and filtering (''interpolation''). When upsampling is performed on a sequence of samples of a ''signal'' or other continuous function, it produces an approximation of the sequence that would have been obtained by sampling the signal at a higher rate (or Dots per inch, density, as in the case of a photograph). For example, if compact disc audio at 44,100 samples/second is upsampled by a factor of 5/4, the resulting sample-rate is 55,125. Upsampling by an integer factor Rate increase by an integer factor L can be explained as a 2-step process, with an equivalent implementation that is more efficient: #Expansion: Create a sequence, x_L[n], comprising the original samples, x[n], separat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Modular Arithmetic
In mathematics, modular arithmetic is a system of arithmetic operations for integers, other than the usual ones from elementary arithmetic, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book '' Disquisitiones Arithmeticae'', published in 1801. A familiar example of modular arithmetic is the hour hand on a 12-hour clock. If the hour hand points to 7 now, then 8 hours later it will point to 3. Ordinary addition would result in , but 15 reads as 3 on the clock face. This is because the hour hand makes one rotation every 12 hours and the hour number starts over when the hour hand passes 12. We say that 15 is ''congruent'' to 3 modulo 12, written 15 ≡ 3 (mod 12), so that 7 + 8 ≡ 3 (mod 12). Similarly, if one starts at 12 and waits 8 hours, the hour hand will be at 8. If one instead waited twice as long, 16 hours, the hour hand would be on 4. This ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Spectral Radius
''Spectral'' is a 2016 Hungarian-American military science fiction action film co-written and directed by Nic Mathieu. Written with Ian Fried (screenwriter), Ian Fried & George Nolfi, the film stars James Badge Dale as DARPA research scientist Mark Clyne, with Max Martini, Emily Mortimer, Clayne Crawford, and Bruce Greenwood in supporting roles. The film is set in a civil war-ridden Moldova as invisible entities slaughter any living being caught in their path. The film was released worldwide on December 9, 2016 on Netflix. On February 1, 2017, Netflix released a prequel graphic novel of the film called ''Spectral: Ghosts of War'' which was made available digitally through the website ComiXology. Plot DARPA researcher Mark Clyne is sent to a United States, US United States Armed Forces, military Air base, airbase on the outskirts of Chișinău, to consult his created line of hyperspectral imaging goggles issued to United States Army, US Army United States Army Special Forces, S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Null Space
In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the part of the domain which is mapped to the zero vector of the co-domain; the kernel is always a linear subspace of the domain. That is, given a linear map between two vector spaces and , the kernel of is the vector space of all elements of such that , where denotes the zero vector in , or more symbolically: \ker(L) = \left\ = L^(\mathbf). Properties The kernel of is a linear subspace of the domain .Linear algebra, as discussed in this article, is a very well established mathematical discipline for which there are many sources. Almost all of the material in this article can be found in , , and Strang's lectures. In the linear map L : V \to W, two elements of have the same image in if and only if their difference lies in the kernel of , that is, L\left(\mathbf_1\right) = L\left(\mathbf_2\right) \quad \text \quad L\left(\mathbf_1-\mathbf_2\right) = \mathbf. From this, it follows ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Singular Matrix
A singular matrix is a square matrix that is not invertible, unlike non-singular matrix which is invertible. Equivalently, an n-by-n matrix A is singular if and only if determinant, det(A)=0. In classical linear algebra, a matrix is called ''non-singular'' (or invertible) when it has an inverse; by definition, a matrix that fails this criterion is singular. In more algebraic terms, an n-by-n matrix A is singular exactly when its columns (and rows) are linearly dependent, so that the linear map x\rightarrow Ax is not one-to-one. In this case the kernel ( null space) of A is non-trivial (has dimension ≥1), and the homogeneous system Ax = 0 admits non-zero solutions. These characterizations follow from standard rank-nullity and invertibility theorems: for a square matrix A, det(A) \neq 0 if and only if rank(A)= n, and det(A) = 0 if and only if rank(A)3 then it is a singular matrix. * Numerical noise/ Round off: In numerical computations, a matrix may be nearly singular when its ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Convolution
In mathematics (in particular, functional analysis), convolution is a operation (mathematics), mathematical operation on two function (mathematics), functions f and g that produces a third function f*g, as the integral of the product of the two functions after one is reflected about the y-axis and shifted. The term ''convolution'' refers to both the resulting function and to the process of computing it. The integral is evaluated for all values of shift, producing the convolution function. The choice of which function is reflected and shifted before the integral does not change the integral result (see #Properties, commutativity). Graphically, it expresses how the 'shape' of one function is modified by the other. Some features of convolution are similar to cross-correlation: for real-valued functions, of a continuous or discrete variable, convolution f*g differs from cross-correlation f \star g only in that either f(x) or g(x) is reflected about the y-axis in convolution; thus i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Block-Toeplitz Matrix
In linear algebra, a Toeplitz matrix or diagonal-constant matrix, named after Otto Toeplitz, is a matrix in which each descending diagonal from left to right is constant. For instance, the following matrix is a Toeplitz matrix: :\qquad\begin a & b & c & d & e \\ f & a & b & c & d \\ g & f & a & b & c \\ h & g & f & a & b \\ i & h & g & f & a \end. Any n \times n matrix A of the form :A = \begin a_0 & a_ & a_ & \cdots & \cdots & a_ \\ a_1 & a_0 & a_ & \ddots & & \vdots \\ a_2 & a_1 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & a_ & a_ \\ \vdots & & \ddots & a_1 & a_0 & a_ \\ a_ & \cdots & \cdots & a_2 & a_1 & a_0 \end is a Toeplitz matrix. If the i,j element of A is denoted A_ then we have :A_ = A_ = a_. A Toeplitz matrix is not necessarily square. Solving a Toeplitz system A matrix equation of the form :Ax = b is called a Toeplitz system if A is a Toeplitz matrix. If A is an n \times n Toeplitz matr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Trace (linear Algebra)
In linear algebra, the trace of a square matrix , denoted , is the sum of the elements on its main diagonal, a_ + a_ + \dots + a_. It is only defined for a square matrix (). The trace of a matrix is the sum of its eigenvalues (counted with multiplicities). Also, for any matrices and of the same size. Thus, similar matrices have the same trace. As a consequence, one can define the trace of a linear operator mapping a finite-dimensional vector space into itself, since all matrices describing such an operator with respect to a basis are similar. The trace is related to the derivative of the determinant (see Jacobi's formula). Definition The trace of an square matrix is defined as \operatorname(\mathbf) = \sum_^n a_ = a_ + a_ + \dots + a_ where denotes the entry on the row and column of . The entries of can be real numbers, complex numbers, or more generally elements of a field . The trace is not defined for non-square matrices. Example Let be a matrix, with \m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]