Torus Based Cryptography
Torus-based cryptography involves using algebraic tori to construct a group for use in ciphers based on the discrete logarithm problem. This idea was first introduced by Alice Silverberg and Karl Rubin in 2003 in the form of a public key algorithm by the name of CEILIDH. It improves on conventional cryptosystems by representing some elements of large finite fields compactly and therefore transmitting fewer bits. See also * Torus In geometry, a torus (: tori or toruses) is a surface of revolution generated by revolving a circle in three-dimensional space one full revolution about an axis that is coplanarity, coplanar with the circle. The main types of toruses inclu ... References * Karl Rubin, Alice Silverberg: Torus-Based Cryptography. CRYPTO 2003: 349–365 External links Torus-Based Cryptography— the paper introducing the concept (in PDF). Public-key cryptography {{Crypto-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Torus
In mathematics, an algebraic torus, where a one dimensional torus is typically denoted by \mathbf G_, \mathbb_m, or \mathbb, is a type of commutative affine algebraic group commonly found in Projective scheme, projective algebraic geometry and toric geometry. Higher dimensional algebraic tori can be modelled as a product of algebraic groups \mathbf G_. These Group (mathematics), groups were named by analogy with the theory of ''tori'' in Lie group theory (see Cartan subgroup). For example, over the complex numbers \mathbb the algebraic torus \mathbf G_ is isomorphic to the group scheme \mathbb^* = \text(\mathbb[t,t^]), which is the scheme theoretic analogue of the Lie group U(1) \subset \mathbb. In fact, any \mathbf G_-action on a complex vector space can be pulled back to a U(1)-action from the inclusion U(1) \subset \mathbb^* as real manifolds. Tori are of fundamental importance in the theory of algebraic groups and Lie groups and in the study of the geometric objects associated ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Group (mathematics)
In mathematics, a group is a Set (mathematics), set with an Binary operation, operation that combines any two elements of the set to produce a third element within the same set and the following conditions must hold: the operation is Associative property, associative, it has an identity element, and every element of the set has an inverse element. For example, the integers with the addition, addition operation form a group. The concept of a group was elaborated for handling, in a unified way, many mathematical structures such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry, groups arise naturally in the study of symmetries and geometric transformations: The symmetries of an object form a group, called the symmetry group of the object, and the transformations of a given type form a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cipher
In cryptography, a cipher (or cypher) is an algorithm for performing encryption or decryption—a series of well-defined steps that can be followed as a procedure. An alternative, less common term is ''encipherment''. To encipher or encode is to convert information into cipher or code. In common parlance, "cipher" is synonymous with "code (cryptography), code", as they are both a set of steps that encrypt a message; however, the concepts are distinct in cryptography, especially classical cryptography. Codes generally substitute different length strings of characters in the output, while ciphers generally substitute the same number of characters as are input. A code maps one meaning with another. Words and phrases can be coded as letters or numbers. Codes typically have direct meaning from input to key. Codes primarily function to save time. Ciphers are algorithmic. The given input must follow the cipher's process to be solved. Ciphers are commonly used to encrypt written info ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Discrete Logarithm Problem
In mathematics, for given real numbers a and b, the logarithm \log_b(a) is a number x such that b^x=a. Analogously, in any group G, powers b^k can be defined for all integers k, and the discrete logarithm \log_b(a) is an integer k such that b^k=a. In arithmetic modulo an integer m, the more commonly used term is index: One can write k=\mathbb_b a \pmod (read "the index of a to the base b modulo m") for b^k \equiv a \pmod if b is a primitive root of m and \gcd(a,m)=1. Discrete logarithms are quickly computable in a few special cases. However, no efficient method is known for computing them in general. In cryptography, the computational complexity of the discrete logarithm problem, along with its application, was first proposed in the Diffie–Hellman problem. Several important algorithms in public-key cryptography, such as ElGamal, base their security on the hardness assumption that the discrete logarithm problem (DLP) over carefully chosen groups has no efficient solution. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alice Silverberg
Alice Silverberg (born 1958) is professor of Mathematics and Computer Science at the University of California, Irvine. She was faculty at the Ohio State University from 1984 through 2004. She has given over 300 lectures at universities around the world, and she has brought attention to issues of sexism and discrimination through her blog ''Alice's Adventures in Numberland''. Research Silverberg's research concerns number theory and cryptography. With Karl Rubin, she introduced the CEILIDH system for torus-based cryptography in 2003, and she currently holds 10 patents related to cryptography. She is also known for her work on theoretical aspects of abelian varieties. Education and career Silverberg graduated from Harvard University in 1979, and received her Ph.D. from Princeton University in 1984 under the supervision of Goro Shimura. She began her academic career at Ohio State University in 1984 and became a full professor in 1996. She moved to the University of California ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Karl Rubin
Karl Cooper Rubin (born January 27, 1956) is an American mathematician at University of California, Irvine as Thorp Professor of Mathematics. Between 1997 and 2006, he was a professor at Stanford, and before that worked at Ohio State University between 1987 and 1999. His research interest is in elliptic curves. He was the first mathematician (1986) to show that some elliptic curves over the rationals have finite Tate–Shafarevich groups. It is widely believed that these groups are always finite. Education and career Rubin graduated from Princeton University in 1976, and obtained his Ph.D. from Harvard in 1981. His thesis advisor was Andrew Wiles. He was a Putnam Fellow in 1974, and a Sloan Research Fellow in 1985. In 1988, Rubin received a National Science Foundation Presidential Young Investigator award, and in 1992 won the American Mathematical Society Cole Prize in number theory. In 2012 he became a fellow of the American Mathematical Society. Rubin's parents were mathemati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Public Key Algorithm
Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic algorithms based on mathematical problems termed one-way functions. Security of public-key cryptography depends on keeping the private key secret; the public key can be openly distributed without compromising security. There are many kinds of public-key cryptosystems, with different security goals, including digital signature, Diffie–Hellman key exchange, public-key key encapsulation, and public-key encryption. Public key algorithms are fundamental security primitives in modern cryptosystems, including applications and protocols that offer assurance of the confidentiality and authenticity of electronic communications and data storage. They underpin numerous Internet standards, such as Transport Layer Security (TLS), SSH, S/MIME, and PGP ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Torus
In geometry, a torus (: tori or toruses) is a surface of revolution generated by revolving a circle in three-dimensional space one full revolution about an axis that is coplanarity, coplanar with the circle. The main types of toruses include ring toruses, horn toruses, and spindle toruses. A ring torus is sometimes colloquially referred to as a donut or doughnut. If the axis of revolution does not touch the circle, the surface has a ring shape and is called a torus of revolution, also known as a ring torus. If the axis of revolution is tangent to the circle, the surface is a horn torus. If the axis of revolution passes twice through the circle, the surface is a Lemon (geometry), spindle torus (or ''self-crossing torus'' or ''self-intersecting torus''). If the axis of revolution passes through the center of the circle, the surface is a degenerate torus, a double-covered sphere. If the revolved curve is not a circle, the surface is called a ''toroid'', as in a square toroid. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |