HOME





Torsor
In mathematics, a principal homogeneous space, or torsor, for a group ''G'' is a homogeneous space ''X'' for ''G'' in which the stabilizer subgroup of every point is trivial. Equivalently, a principal homogeneous space for a group ''G'' is a non-empty set ''X'' on which ''G'' acts freely and transitively (meaning that, for any ''x'', ''y'' in ''X'', there exists a unique ''g'' in ''G'' such that , where · denotes the (right) action of ''G'' on ''X''). An analogous definition holds in other categories, where, for example, *''G'' is a topological group, ''X'' is a topological space and the action is continuous, *''G'' is a Lie group, ''X'' is a smooth manifold and the action is smooth, *''G'' is an algebraic group, ''X'' is an algebraic variety and the action is regular. Definition If ''G'' is nonabelian then one must distinguish between left and right torsors according to whether the action is on the left or right. In this article, we will use right actions. To state ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orthonormal Bases
In mathematics, particularly linear algebra, an orthonormal basis for an inner product space V with finite dimension is a basis for V whose vectors are orthonormal, that is, they are all unit vectors and orthogonal to each other. For example, the standard basis for a Euclidean space \R^n is an orthonormal basis, where the relevant inner product is the dot product of vectors. The image of the standard basis under a rotation or reflection (or any orthogonal transformation) is also orthonormal, and every orthonormal basis for \R^n arises in this fashion. An orthonormal basis can be derived from an orthogonal basis via normalization. The choice of an origin and an orthonormal basis forms a coordinate frame known as an ''orthonormal frame''. For a general inner product space V, an orthonormal basis can be used to define normalized orthogonal coordinates on V. Under these coordinates, the inner product becomes a dot product of vectors. Thus the presence of an orthonormal basis red ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homogeneous Space
In mathematics, a homogeneous space is, very informally, a space that looks the same everywhere, as you move through it, with movement given by the action of a group. Homogeneous spaces occur in the theories of Lie groups, algebraic groups and topological groups. More precisely, a homogeneous space for a group ''G'' is a non-empty manifold or topological space ''X'' on which ''G'' acts transitively. The elements of ''G'' are called the symmetries of ''X''. A special case of this is when the group ''G'' in question is the automorphism group of the space ''X'' – here "automorphism group" can mean isometry group, diffeomorphism group, or homeomorphism group. In this case, ''X'' is homogeneous if intuitively ''X'' looks locally the same at each point, either in the sense of isometry (rigid geometry), diffeomorphism (differential geometry), or homeomorphism (topology). Some authors insist that the action of ''G'' be faithful (non-identity elements act non-trivially), althou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stabilizer Subgroup
In mathematics, a group action of a group G on a set S is a group homomorphism from G to some group (under function composition) of functions from S to itself. It is said that G acts on S. Many sets of transformations form a group under function composition; for example, the rotations around a point in the plane. It is often useful to consider the group as an abstract group, and to say that one has a group action of the abstract group that consists of performing the transformations of the group of transformations. The reason for distinguishing the group from the transformations is that, generally, a group of transformations of a structure acts also on various related structures; for example, the above rotation group also acts on triangles by transforming triangles into triangles. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Action (mathematics)
In mathematics, a group action of a group G on a set (mathematics), set S is a group homomorphism from G to some group (under function composition) of functions from S to itself. It is said that G acts on S. Many sets of transformation (function), transformations form a group (mathematics), group under function composition; for example, the rotation (mathematics), rotations around a point in the plane. It is often useful to consider the group as an abstract group, and to say that one has a group action of the abstract group that consists of performing the transformations of the group of transformations. The reason for distinguishing the group from the transformations is that, generally, a group of transformations of a mathematical structure, structure acts also on various related structures; for example, the above rotation group also acts on triangles by transforming triangles into triangles. If a group acts on a structure, it will usually also act on objects built from that st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Flag (geometry)
In (polyhedral) geometry, a flag is a sequence of Face (geometry), faces of a Abstract polytope, polytope, each contained in the next, with exactly one face from each dimension. More formally, a flag of an -polytope is a set such that and there is precisely one in for each , Since, however, the minimal face and the maximal face must be in every flag, they are often omitted from the list of faces, as a shorthand. These latter two are called improper faces. For example, a flag of a polyhedron comprises one Vertex (geometry), vertex, one Edge (geometry), edge incident to that vertex, and one polygonal face incident to both, plus the two improper faces. A polytope is regular polytope, regular if, and only if, its symmetry group is transitive group action, transitive on its flags. This definition excludes chiral polytopes. Two flags are -adjacent if they only differ by a face of rank . They are adjacent if they are -adjacent for some value of . Each flag is -adjacent to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ternary Operation
In mathematics, a ternary operation is an ''n''- ary operation with ''n'' = 3. A ternary operation on a set ''A'' takes any given three elements of ''A'' and combines them to form a single element of ''A''. In computer science, a ternary operator is an operator that takes three arguments as input and returns one output. Examples The function T(a, b, c) = ab + c is an example of a ternary operation on the integers (or on any structure where + and \times are both defined). Properties of this ternary operation have been used to define planar ternary rings in the foundations of projective geometry. In the Euclidean plane with points ''a'', ''b'', ''c'' referred to an origin, the ternary operation , b, c= a - b + c has been used to define free vectors. Since (''abc'') = ''d'' implies ''b'' – ''a'' = ''c'' – ''d'', the directed line segments ''b'' – ''a'' and ''c'' – ''d'' are equipollent and are associated with the same free vector. Any three points in the plane ''a, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Identity (mathematics)
In mathematics, an identity is an equality (mathematics), equality relating one mathematical expression ''A'' to another mathematical expression ''B'', such that ''A'' and ''B'' (which might contain some variable (mathematics), variables) produce the same value for all values of the variables within a certain domain of discourse. In other words, ''A'' = ''B'' is an identity if ''A'' and ''B'' define the same function (mathematics), functions, and an identity is an equality between functions that are differently defined. For example, (a+b)^2 = a^2 + 2ab + b^2 and \cos^2\theta + \sin^2\theta =1 are identities. Identities are sometimes indicated by the triple bar symbol instead of , the equals sign. Formally, an identity is a universally quantified equality. Common identities Algebraic identities Certain identities, such as a+0=a and a+(-a)=0, form the basis of algebra, while other identities, such as (a+b)^2 = a^2 + 2ab +b^2 and a^2 - b^2 = (a+b)(a-b), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Affine Space
In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related to parallelism and ratio of lengths for parallel line segments. Affine space is the setting for affine geometry. As in Euclidean space, the fundamental objects in an affine space are called '' points'', which can be thought of as locations in the space without any size or shape: zero-dimensional. Through any pair of points an infinite straight line can be drawn, a one-dimensional set of points; through any three points that are not collinear, a two-dimensional plane can be drawn; and, in general, through points in general position, a -dimensional flat or affine subspace can be drawn. Affine space is characterized by a notion of pairs of parallel lines that lie within the same plane but never meet each-other (non-parallel lines wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called scalar (mathematics), ''scalars''. The operations of vector addition and scalar multiplication must satisfy certain requirements, called ''vector axioms''. Real vector spaces and complex vector spaces are kinds of vector spaces based on different kinds of scalars: real numbers and complex numbers. Scalars can also be, more generally, elements of any field (mathematics), field. Vector spaces generalize Euclidean vectors, which allow modeling of Physical quantity, physical quantities (such as forces and velocity) that have not only a Magnitude (mathematics), magnitude, but also a Orientation (geometry), direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrix (mathematics), matrices, which ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Basis (linear Algebra)
In mathematics, a Set (mathematics), set of elements of a vector space is called a basis (: bases) if every element of can be written in a unique way as a finite linear combination of elements of . The coefficients of this linear combination are referred to as components or coordinates of the vector with respect to . The elements of a basis are called . Equivalently, a set is a basis if its elements are linearly independent and every element of is a linear combination of elements of . In other words, a basis is a linearly independent spanning set. A vector space can have several bases; however all the bases have the same number of elements, called the dimension (vector space), dimension of the vector space. This article deals mainly with finite-dimensional vector spaces. However, many of the principles are also valid for infinite-dimensional vector spaces. Basis vectors find applications in the study of crystal structures and frame of reference, frames of reference. De ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Regular Polytope
In mathematics, a regular polytope is a polytope whose symmetry group acts transitive group action, transitively on its flag (geometry), flags, thus giving it the highest degree of symmetry. In particular, all its elements or -faces (for all , where is the dimension of the polytope) — cells, faces and so on — are also transitive on the symmetries of the polytope, and are themselves regular polytopes of dimension . Regular polytopes are the generalised analog in any number of dimensions of regular polygons (for example, the square (geometry), square or the regular pentagon) and regular polyhedra (for example, the cube). The strong symmetry of the regular polytopes gives them an aesthetics, aesthetic quality that interests both mathematicians and non-mathematicians. Classically, a regular polytope in dimensions may be defined as having regular Facet (geometry), facets (-faces) and regular vertex figures. These two conditions are sufficient to ensure that all faces ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]