HOME





Targeted Alpha Therapy
Targeted alpha-particle therapy (or TAT) is an in-development method of targeted radionuclide therapy of various cancers. It employs radioactive substances which undergo alpha decay to treat diseased tissue at close proximity. It has the potential to provide highly targeted treatment, especially to microscopic tumour cell (biology), cells. Targets include leukemias, lymphomas, gliomas, melanoma, and Primary peritoneal carcinoma, peritoneal carcinomatosis. As in diagnostic nuclear medicine, appropriate radionuclides can be Chemical bond, chemically bound to a targeting biomolecule which carries the combined radiopharmaceutical to a specific treatment point. It has been said that "α-emitters are indispensable with regard to optimisation of strategies for tumour therapy". Advantages of alpha emitters The primary advantage of alpha particle (α) emitters over other types of radioactive sources is their very high linear energy transfer (LET) and relative biological effectiveness (RBE). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Radionuclide
A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferred to one of its electrons to release it as a conversion electron; or used to create and emit a new particle (alpha particle or beta particle) from the nucleus. During those processes, the radionuclide is said to undergo radioactive decay. These emissions are considered ionizing radiation because they are energetic enough to liberate an electron from another atom. The radioactive decay can produce a stable nuclide or will sometimes produce a new unstable radionuclide which may undergo further decay. Radioactive decay is a random process at the level of single atoms: it is impossible to predict when one particular atom will decay. However, for a collection of atoms of a single nu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Alpha Particle
Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay but may also be produced in different ways. Alpha particles are named after the first letter in the Greek alphabet, α. The symbol for the alpha particle is α or α2+. Because they are identical to helium nuclei, they are also sometimes written as He2+ or 2+ indicating a helium ion with a +2 charge (missing its two electrons). Once the ion gains electrons from its environment, the alpha particle becomes a normal (electrically neutral) helium atom . Alpha particles have a net spin of zero. When produced in standard alpha radioactive decay, alpha particles generally have a kinetic energy of about 5  MeV and a velocity in the vicinity of 4% of the speed of light. They are a highly ionizing form of particle radiation, with low penetration depth (stopped b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bismuth-209
Bismuth-209 (Bi) is an isotope of bismuth, with the longest known half-life of any radioisotope that undergoes α-decay (alpha decay). It has 83 protons and a magic number of 126 neutrons, and an atomic mass of 208.9803987 amu (atomic mass units). Primordial bismuth consists entirely of this isotope. Decay properties Bismuth-209 was long thought to have the heaviest stable nucleus of any element, but in 2003, a research team at the Institut d’Astrophysique Spatiale in Orsay, France, discovered that Bi undergoes alpha decay with a half-life of 20.1 exayears (2.01×10, or 20.1 quintillion years), over 10 times longer than the estimated age of the universe. The heaviest nucleus considered to be stable is now lead-208 and the heaviest stable monoisotopic element is gold ( gold-197). Theory had previously predicted a half-life of 4.6 years. It had been suspected to be radioactive for a long time. The decay produces a 3.14 MeV alpha particle plus thallium-205. Bismuth-209 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Astatine-211
Astatine (85At) has 41 known isotopes, all of which are radioactive; their mass numbers range from 188 to 229 (though 189At is undiscovered). There are also 24 known metastable excited states. The longest-lived isotope is 210At, which has a half-life of 8.1 hours; the longest-lived isotope existing in naturally occurring decay chains is 219At with a half-life of 56 seconds. List of isotopes , -id=Astatine-188 , rowspan=2, 188At , rowspan=2 style="text-align:right" , 85 , rowspan=2 style="text-align:right" , 103 , rowspan=2, , rowspan=2, , α (~50%) , 184Bi , rowspan=2, , rowspan=2, , - , p (~50%) , 187Po , -id=Astatine-190 , 190At , style="text-align:right" , 85 , style="text-align:right" , 105 , , , α , 186Bi , (10−) , , -id=Astatine-191 , 191At , style="text-align:right" , 85 , style="text-align:right" , 106 , , , α , 187Bi , (1/2+) , , -id=Astatine-191m , style="text-indent:1em" , 191mAt , colspan="3" style="text-indent:2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lead
Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleable, and also has a relatively low melting point. When freshly cut, lead is a shiny gray with a hint of blue. It tarnishes to a dull gray color when exposed to air. Lead has the highest atomic number of any stable nuclide, stable element and three of its isotopes are endpoints of major nuclear decay chains of heavier elements. Lead is a relatively unreactive post-transition metal. Its weak metallic character is illustrated by its Amphoterism, amphoteric nature; lead and lead oxides react with acids and base (chemistry), bases, and it tends to form covalent bonds. Lead compounds, Compounds of lead are usually found in the +2 oxidation state rather than the +4 state common with lighter members of the carbon group. Exceptions are mostly limited ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclotron
A cyclotron is a type of particle accelerator invented by Ernest Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. Lawrence, Ernest O. ''Method and apparatus for the acceleration of ions'', filed: January 26, 1932, granted: February 20, 1934 A cyclotron accelerates charged particles outwards from the center of a flat cylindrical vacuum chamber along a spiral path. The particles are held to a spiral trajectory by a static magnetic field and accelerated by a rapidly varying electric field. Lawrence was awarded the 1939 Nobel Prize in Physics for this invention. The cyclotron was the first "cyclical" accelerator. The primary accelerators before the development of the cyclotron were electrostatic accelerators, such as the Cockcroft–Walton generator and the Van de Graaff generator. In these accelerators, particles would cross an accelerating electric field only once. Thus, the energy gained by the particles was limited by the maximum ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thorium-229
Thorium (90Th) has seven naturally occurring isotopes but none are stable. One isotope, 232Th, is ''relatively'' stable, with a half-life of 1.405×1010 years, considerably longer than the age of the Earth, and even slightly longer than the generally accepted age of the universe. This isotope makes up nearly all natural thorium, so thorium was considered to be mononuclidic. However, in 2013, IUPAC reclassified thorium as binuclidic, due to large amounts of 230Th in deep seawater. Thorium has a characteristic terrestrial isotopic composition and thus a standard atomic weight can be given. Thirty-one radioisotopes have been characterized, with the most stable being 232Th, 230Th with a half-life of 75,380 years, 229Th with a half-life of 7,917 years, and 228Th with a half-life of 1.92 years. All of the remaining radioactive isotopes have half-lives that are less than thirty days and the majority of these have half-lives that are less than ten minutes. One isotope, 229Th, has a nuc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bismuth-213
Bismuth (83Bi) has 41 known isotopes, ranging from 184Bi to 224Bi. Bismuth has no stable isotopes, but does have one very long-lived isotope; thus, the standard atomic weight can be given as . Although bismuth-209 is now known to be radioactive, it has classically been considered to be a stable isotope because it has a half-life of approximately 2.01×1019 years, which is more than a billion times the age of the universe. Besides 209Bi, the most stable bismuth radioisotopes are 210mBi with a half-life of 3.04 million years, 208Bi with a half-life of 368,000 years and 207Bi, with a half-life of 32.9 years, none of which occur in nature. All other isotopes have half-lives under 1 year, most under a day. Of naturally occurring radioisotopes, the most stable is radiogenic 210Bi with a half-life of 5.012 days. 210mBi is unusual for being a nuclear isomer with a half-life multiple orders of magnitude longer than that of the ground state. List of isotopes , -id=Bismuth-184 , 184Bi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Actinium-225
Actinium-225 (225Ac, Ac-225) is an isotope of actinium. It undergoes alpha decay to francium-221 with a half-life of 10 days, and is an intermediate decay product in the neptunium series (the decay chain starting at neptunium-237, 237Np). Except for minuscule quantities arising from this decay chain in nature, 225Ac is entirely synthetic radioisotope, synthetic. The decay properties of actinium-225 are favorable for usage in targeted alpha-particle therapy, targeted alpha therapy (TAT); clinical trials have demonstrated the applicability of radiopharmaceuticals containing 225Ac to treat various types of cancer. However, the scarcity of this isotope resulting from its necessary synthesis in cyclotrons limits its potential applications. Decay and occurrence Actinium-225 has a half-life of 10 days and decays by alpha particle, alpha emission. It is part of the neptunium series, for it arises as a decay product of neptunium-237 and its daughter nuclide, daughters such as uraniu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cell Death
Cell death is the event of a biological cell ceasing to carry out its functions. This may be the result of the natural process of old cells dying and being replaced by new ones, as in programmed cell death, or may result from factors such as diseases, localized injury, or the death of the organism of which the cells are part. Apoptosis or Type I cell-death, and Autophagy (cellular), autophagy or Type II cell-death are both forms of programmed cell death, while necrosis is a non-physiological process that occurs as a result of infection or injury. The term "cell necrobiology" has been used to describe the life processes associated with morphological, biochemical, and molecular changes which predispose, precede, and accompany cell death, as well as the consequences and tissue response to cell death. The word is derived from the Greek language, Greek νεκρό meaning "death", βìο meaning "life", and logos, λόγος meaning "the study of". The term was initially coined to bro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

DNA Repair
DNA repair is a collection of processes by which a cell (biology), cell identifies and corrects damage to the DNA molecules that encode its genome. A weakened capacity for DNA repair is a risk factor for the development of cancer. DNA is constantly modified in Cell (biology), cells, by internal metabolism, metabolic by-products, and by external ionizing radiation, ultraviolet light, and medicines, resulting in spontaneous DNA damage involving tens of thousands of individual molecular lesions per cell per day. DNA modifications can also be programmed. Molecular lesions can cause structural damage to the DNA molecule, and can alter or eliminate the cell's ability for Transcription (biology), transcription and gene expression. Other lesions may induce potentially harmful mutations in the cell's genome, which affect the survival of its daughter cells following mitosis. Consequently, DNA repair as part of the DNA damage response (DDR) is constantly active. When normal repair proce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Yttrium-90
Yttrium-90 () is a radioactive isotope of yttrium. Yttrium-90 has found a wide range of uses in radiation therapy to treat some forms of cancer Cancer is a group of diseases involving Cell growth#Disorders, abnormal cell growth with the potential to Invasion (cancer), invade or Metastasis, spread to other parts of the body. These contrast with benign tumors, which do not spread. Po .... Along with other isotopes of yttrium, it is sometimes called radioyttrium. Decay undergoes beta particles emissions/decay (beta decay, β− decay) to zirconium-90 with a half-life of 64.1 hours and a decay energy of 2.28 MeV with an average beta energy of 0.9336 MeV. It also produces 0.01% 1.7 MeV photons during its decay process to the 0+ state of 90Zr, followed by pair production. The interaction between emitted electrons and matter can lead to the emission of Bremsstrahlung radiation. Production Yttrium-90 is produced by the nuclear decay of strontium-90 which has a half-l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]