Symmetric Monoidal Functor
In category theory, monoidal functors are functors between monoidal category, monoidal categories which preserve the monoidal structure. More specifically, a monoidal functor between two monoidal categories consists of a functor between the categories, along with two ''coherence maps''—a natural transformation and a morphism that preserve monoidal multiplication and unit, respectively. Mathematicians require these coherence maps to satisfy additional properties depending on how strictly they want to preserve the monoidal structure; each of these properties gives rise to a slightly different definition of monoidal functors * The coherence maps of lax monoidal functors satisfy no additional properties; they are not necessarily invertible. * The coherence maps of strong monoidal functors are invertible. * The coherence maps of strict monoidal functors are identity maps. Although we distinguish between these different definitions here, authors may call any one of these simply monoid ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category Theory
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in most areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient space (other), quotient spaces, direct products, completion, and duality (mathematics), duality. Many areas of computer science also rely on category theory, such as functional programming and Semantics (computer science), semantics. A category (mathematics), category is formed by two sorts of mathematical object, objects: the object (category theory), objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. Metapho ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cobordism
In mathematics, cobordism is a fundamental equivalence relation on the class of compact space, compact manifolds of the same dimension, set up using the concept of the boundary (topology), boundary (French ''wikt:bord#French, bord'', giving ''cobordism'') of a manifold. Two manifolds of the same dimension are ''cobordant'' if their disjoint union is the ''boundary'' of a compact manifold one dimension higher. The boundary of an (n+1)-dimensional manifold W is an n-dimensional manifold \partial W that is closed, i.e., with empty boundary. In general, a closed manifold need not be a boundary: cobordism theory is the study of the difference between all closed manifolds and those that are boundaries. The theory was originally developed by René Thom for smooth manifolds (i.e., differentiable), but there are now also versions for Piecewise linear manifold, piecewise linear and topological manifolds. A ''cobordism'' between manifolds M and N is a compact manifold W whose boundary is th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monoidal Adjunction
A monoidal adjunction is an adjunction in mathematics between monoidal categories which respects the monoidal structure. Suppose that (\mathcal C,\otimes,I) and (\mathcal D,\bullet,J) are two monoidal categories. A monoidal adjunction between two lax monoidal functors :(F,m):(\mathcal C,\otimes,I)\to (\mathcal D,\bullet,J) and (G,n):(\mathcal D,\bullet,J)\to(\mathcal C,\otimes,I) is an adjunction (F,G,\eta,\varepsilon) between the underlying functors, such that the natural transformation In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natur ...s :\eta:1_\Rightarrow G\circ F and \varepsilon:F\circ G\Rightarrow 1_ are monoidal natural transformations. Lifting adjunctions to monoidal adjunctions Suppose that :(F,m):(\mathcal C,\otimes,I)\to (\mathcal D,\bullet,J) is a lax monoidal funct ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monoidal Natural Transformation
Suppose that (\mathcal C,\otimes,I) and (\mathcal D,\bullet, J) are two monoidal categories and :(F,m):(\mathcal C,\otimes,I)\to(\mathcal D,\bullet, J) and (G,n):(\mathcal C,\otimes,I)\to(\mathcal D,\bullet, J) are two lax monoidal functors between those categories. A monoidal natural transformation :\theta:(F,m) \to (G,n) between those functors is a natural transformation In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natur ... \theta:F \to G between the underlying functors such that the diagrams : and commute for every objects A and B of \mathcal C. A symmetric monoidal natural transformation is a monoidal natural transformation between symmetric monoidal functors. Inline citations References * {{DEFAULTSORT:Monoidal Natural Transformation Monoidal categories ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Adjoint Functors
In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems (i.e., constructions of objects having a certain universal property), such as the construction of a free group on a set in algebra, or the construction of the Stone–Čech compactification of a topological space in topology. By definition, an adjunction between categories \mathcal and \mathcal is a pair of functors (assumed to be covariant) :F: \mathcal \rightarrow \mathcal and G: \mathcal \rightarrow \mathcal and, for all objects c in \mathcal and d in \mathcal, a bijection between the respective morphism sets :\ma ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monoid Object
In category theory, a branch of mathematics, a monoid (or monoid object, or internal monoid, or algebra) in a monoidal category is an object ''M'' together with two morphisms * ''μ'': ''M'' ⊗ ''M'' → ''M'' called ''multiplication'', * ''η'': ''I'' → ''M'' called ''unit'', such that the pentagon diagram : and the unitor diagram : commute. In the above notation, 1 is the identity morphism of ''M'', ''I'' is the unit element and ''α'', ''λ'' and ''ρ'' are respectively the associativity, the left identity and the right identity of the monoidal category C. Dually, a comonoid in a monoidal category C is a monoid in the dual category Cop. Suppose that the monoidal category C has a braiding ''γ''. A monoid ''M'' in C is commutative when . Examples * A monoid object in Set, the category of sets (with the monoidal structure induced by the Cartesian product), is a monoid in the usual sense. * A monoid object in Top, the category of topological spaces (with the monoidal ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monoidal Coherence Map From Applicative Formulation
{{mathdab ...
Monoidal may refer to: * Monoidal category, concept in category theory ** Monoidal functor, between monoidal categories ** Monoidal natural transformation, between monoidal functors * Monoidal transformation, in algebraic geometry See also *Monoid, an algebraic structure *Monoid (category theory) In category theory, a branch of mathematics, a monoid (or monoid object, or internal monoid, or algebra) in a monoidal category is an object ''M'' together with two morphisms * ''μ'': ''M'' ⊗ ''M'' → ''M'' called ''multiplication'', * ''η ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Applicative Form Of Monoidal Coherence Map 01
Applicative can refer to: *Applicative programming language *Applicative voice The applicative voice (; abbreviated or ) is a grammatical voice that promotes an ''oblique'' argument of a verb to the ''core'' object argument. It is generally considered a valency-increasing morpheme. The applicative is often found in aggl ... * Applicative functor {{Disambiguation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Functional Programming
In computer science, functional programming is a programming paradigm where programs are constructed by Function application, applying and Function composition (computer science), composing Function (computer science), functions. It is a declarative programming paradigm in which function definitions are Tree (data structure), trees of Expression (computer science), expressions that map Value (computer science), values to other values, rather than a sequence of Imperative programming, imperative Statement (computer science), statements which update the State (computer science), running state of the program. In functional programming, functions are treated as first-class citizens, meaning that they can be bound to names (including local Identifier (computer languages), identifiers), passed as Parameter (computer programming), arguments, and Return value, returned from other functions, just as any other data type can. This allows programs to be written in a Declarative programming, d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Closed Monoidal Categories
In mathematics, especially in category theory, a closed monoidal category (or a ''monoidal closed category'') is a category that is both a monoidal category and a closed category in such a way that the structures are compatible. A classic example is the category of sets, Set, where the monoidal product of sets A and B is the usual cartesian product A \times B, and the internal Hom B^A is the set of functions from A to B. A non- cartesian example is the category of vector spaces, ''K''-Vect, over a field K. Here the monoidal product is the usual tensor product of vector spaces, and the internal Hom is the vector space of linear maps from one vector space to another. The internal language of closed symmetric monoidal categories is linear logic and the type system is the linear type system. Many examples of closed monoidal categories are symmetric. However, this need not always be the case, as non-symmetric monoidal categories can be encountered in category-theoretic formulations o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homology (mathematics)
In mathematics, the term homology, originally introduced in algebraic topology, has three primary, closely-related usages. The most direct usage of the term is to take the ''homology of a chain complex'', resulting in a sequence of Abelian group, abelian groups called ''homology groups.'' This operation, in turn, allows one to associate various named ''homologies'' or ''homology theories'' to various other types of mathematical objects. Lastly, since there are many homology theories for Topological space, topological spaces that produce the same answer, one also often speaks of the ''homology of a topological space''. (This latter notion of homology admits more intuitive descriptions for 1- or 2-dimensional topological spaces, and is sometimes referenced in popular mathematics.) There is also a related notion of the cohomology of a Cochain complexes, cochain complex, giving rise to various cohomology theories, in addition to the notion of the cohomology of a topological space. Ho ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Topological Quantum Field Theory
In gauge theory and mathematical physics, a topological quantum field theory (or topological field theory or TQFT) is a quantum field theory that computes topological invariants. While TQFTs were invented by physicists, they are also of mathematical interest, being related to, among other things, knot theory and the theory of four-manifolds in algebraic topology, and to the theory of moduli spaces in algebraic geometry. Donaldson, Jones, Witten, and Kontsevich have all won Fields Medals for mathematical work related to topological field theory. In condensed matter physics, topological quantum field theories are the low-energy effective theories of topologically ordered states, such as fractional quantum Hall states, string-net condensed states, and other strongly correlated quantum liquid states. Overview In a topological field theory, correlation functions do not depend on the metric of spacetime. This means that the theory is not sensitive to changes in the shape ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |