Subgroup Growth
In mathematics, subgroup growth is a branch of group theory, dealing with quantitative questions about subgroups of a given group. Let G be a finitely generated group. Then, for each integer n define a_n(G) to be the number of subgroups H of index n in G. Similarly, if G is a topological group, s_n(G) denotes the number of open subgroups U of index n in G. One similarly defines m_n(G) and s_n^\triangleleft(G) to denote the number of maximal and normal subgroups of index n, respectively. Subgroup growth studies these functions, their interplay, and the characterization of group theoretical properties in terms of these functions. The theory was motivated by the desire to enumerate finite groups of given order, and the analogy with Mikhail Gromov's notion of word growth. Nilpotent groups Let G be a finitely generated torsionfree nilpotent group. Then there exists a composition series with infinite cyclic factors, which induces a bijection (though not necessarily a homomorphism) ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
First-order Predicate Calculus
First-order logic, also called predicate logic, predicate calculus, or quantificational logic, is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables. Rather than propositions such as "all humans are mortal", in first-order logic one can have expressions in the form "for all ''x'', if ''x'' is a human, then ''x'' is mortal", where "for all ''x"'' is a quantifier, ''x'' is a variable, and "... ''is a human''" and "... ''is mortal''" are predicates. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic. A theory about a topic, such as set theory, a theory for groups,A. Tarski, ''Undecidable Theories'' (1953), p. 77. Studies in Logic and the Foundation of Mathematics, North-Holland or a formal theory o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Haar Measure
In mathematical analysis, the Haar measure assigns an "invariant volume" to subsets of locally compact topological groups, consequently defining an integral for functions on those groups. This Measure (mathematics), measure was introduced by Alfréd Haar in 1933, though its special case for Lie groups had been introduced by Adolf Hurwitz in 1897 under the name "invariant integral". Haar measures are used in many parts of mathematical analysis, analysis, number theory, group theory, representation theory, mathematical statistics, statistics, probability theory, and ergodic theory. Preliminaries Let (G, \cdot) be a locally compact space, locally compact Hausdorff space, Hausdorff topological group. The Sigma-algebra, \sigma-algebra generated by all open subsets of G is called the Borel algebra. An element of the Borel algebra is called a Borel set. If g is an element of G and S is a subset of G, then we define the left and right Coset, translates of S by ''g'' as follows: * Left ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
P-adic Number
In number theory, given a prime number , the -adic numbers form an extension of the rational numbers which is distinct from the real numbers, though with some similar properties; -adic numbers can be written in a form similar to (possibly infinite) decimals, but with digits based on a prime number rather than ten, and extending to the left rather than to the right. For example, comparing the expansion of the rational number \tfrac15 in base vs. the -adic expansion, \begin \tfrac15 &= 0.01210121\ldots \ (\text 3) &&= 0\cdot 3^0 + 0\cdot 3^ + 1\cdot 3^ + 2\cdot 3^ + \cdots \\ mu\tfrac15 &= \dots 121012102 \ \ (\text) &&= \cdots + 2\cdot 3^3 + 1 \cdot 3^2 + 0\cdot3^1 + 2 \cdot 3^0. \end Formally, given a prime number , a -adic number can be defined as a series s=\sum_^\infty a_i p^i = a_k p^k + a_ p^ + a_ p^ + \cdots where is an integer (possibly negative), and each a_i is an integer such that 0\le a_i < p. A -adic integer is a -adic number such that < ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Divisor
In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a '' multiple'' of m. An integer n is divisible or evenly divisible by another integer m if m is a divisor of n; this implies dividing n by m leaves no remainder. Definition An integer n is divisible by a nonzero integer m if there exists an integer k such that n=km. This is written as : m\mid n. This may be read as that m divides n, m is a divisor of n, m is a factor of n, or n is a multiple of m. If m does not divide n, then the notation is m\not\mid n. There are two conventions, distinguished by whether m is permitted to be zero: * With the convention without an additional constraint on m, m \mid 0 for every integer m. * With the convention that m be nonzero, m \mid 0 for every nonzero integer m. General Divisors can be negative as well as positive, although often the term is restricted to posi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cyclic Number (group Theory)
A cyclic number is a natural number ''n'' such that ''n'' and φ(''n'') are coprime. Here φ is Euler's totient function. An equivalent definition is that a number ''n'' is cyclic if and only if any group of order ''n'' is cyclic. Any prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ... is clearly cyclic. All cyclic numbers are square-free.For if some prime square ''p''2 divides ''n'', then from the formula for φ it is clear that ''p'' is a common divisor of ''n'' and φ(''n''). Let ''n'' = ''p''1 ''p''2 … ''p''''k'' where the ''p''''i'' are distinct primes, then φ(''n'') = (''p''1 − 1)(''p''2 − 1)...(''p''''k'' – 1). If no ''p''''i'' divides any (''p''''j'' – 1), then ''n'' and φ(''n'') have no common (prime) divisor, and ''n'' is cyclic. The first cycl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Normal Series
In mathematics, specifically group theory, a subgroup series of a group G is a chain of subgroups: :1 = A_0 \leq A_1 \leq \cdots \leq A_n = G where 1 is the trivial subgroup. Subgroup series can simplify the study of a group to the study of simpler subgroups and their relations, and several subgroup series can be invariantly defined and are important invariants of groups. A subgroup series is used in the subgroup method. Subgroup series are a special example of the use of filtrations in abstract algebra. Definition Normal series, subnormal series A subnormal series (also normal series, normal tower, subinvariant series, or just series) of a group ''G'' is a sequence of subgroups, each a normal subgroup of the next one. In a standard notation :1 = A_0\triangleleft A_1\triangleleft \cdots \triangleleft A_n = G. There is no requirement made that ''A''''i'' be a normal subgroup of ''G'', only a normal subgroup of ''A''''i'' +1. The quotient groups ''A''''i'' +1/''A' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Set (mathematics)
In mathematics, a set is a collection of different things; the things are '' elements'' or ''members'' of the set and are typically mathematical objects: numbers, symbols, points in space, lines, other geometric shapes, variables, or other sets. A set may be finite or infinite. There is a unique set with no elements, called the empty set; a set with a single element is a singleton. Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to provide rigorous foundations for all branches of mathematics since the first half of the 20th century. Context Before the end of the 19th century, sets were not studied specifically, and were not clearly distinguished from sequences. Most mathematicians considered infinity as potentialmeaning that it is the result of an endless processand were reluctant to consider infinite sets, that is sets whose number of members is not a natural number. Specific ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Presentation Of A Group
In mathematics, a presentation is one method of specifying a group. A presentation of a group ''G'' comprises a set ''S'' of generators—so that every element of the group can be written as a product of powers of some of these generators—and a set ''R'' of relations among those generators. We then say ''G'' has presentation :\langle S \mid R\rangle. Informally, ''G'' has the above presentation if it is the "freest group" generated by ''S'' subject only to the relations ''R''. Formally, the group ''G'' is said to have the above presentation if it is isomorphic to the quotient of a free group on ''S'' by the normal subgroup generated by the relations ''R''. As a simple example, the cyclic group of order ''n'' has the presentation :\langle a \mid a^n = 1\rangle, where 1 is the group identity. This may be written equivalently as :\langle a \mid a^n\rangle, thanks to the convention that terms that do not include an equals sign are taken to be equal to the group identity ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Generating Set Of A Group
In abstract algebra, a generating set of a group is a subset of the group set such that every element of the group (mathematics), group can be expressed as a combination (under the group operation) of finitely many elements of the subset and their Inverse element, inverses. In other words, if S is a subset of a group G, then \langle S\rangle, the ''subgroup generated by S'', is the smallest subgroup of G containing every element of S, which is equal to the intersection over all subgroups containing the elements of S; equivalently, \langle S\rangle is the subgroup of all elements of G that can be expressed as the finite product of elements in S and their inverses. (Note that inverses are only needed if the group is infinite; in a finite group, the inverse of an element can be expressed as a power of that element.) If G=\langle S\rangle, then we say that S ''generates'' G, and the elements in S are called ''generators'' or ''group generators''. If S is the empty set, then \langle S ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Heisenberg Group
In mathematics, the Heisenberg group H, named after Werner Heisenberg, is the group of 3×3 upper triangular matrices of the form : \begin 1 & a & c\\ 0 & 1 & b\\ 0 & 0 & 1\\ \end under the operation of matrix multiplication. Elements ''a, b'' and ''c'' can be taken from any commutative ring with identity, often taken to be the ring of real numbers (resulting in the "continuous Heisenberg group") or the ring of integers (resulting in the "discrete Heisenberg group"). The continuous Heisenberg group arises in the description of one-dimensional quantum mechanical systems, especially in the context of the Stone–von Neumann theorem. More generally, one can consider Heisenberg groups associated to ''n''-dimensional systems, and most generally, to any symplectic vector space. Three-dimensional case In the three-dimensional case, the product of two Heisenberg matrices is given by : \begin 1 & a & c\\ 0 & 1 & b\\ 0 & 0 & 1\\ \end \begin 1 & a' & c'\\ 0 & 1 & b'\\ 0 & 0 & ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rational Function
In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers; they may be taken in any field . In this case, one speaks of a rational function and a rational fraction ''over ''. The values of the variables may be taken in any field containing . Then the domain of the function is the set of the values of the variables for which the denominator is not zero, and the codomain is . The set of rational functions over a field is a field, the field of fractions of the ring of the polynomial functions over . Definitions A function f is called a rational function if it can be written in the form : f(x) = \frac where P and Q are polynomial functions of x and Q is not the zero function. The domain of f is the set of all values of x for which the denominator Q(x) is not zero. How ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |